Skip to main content
Log in

The convergence space of minimal USCO mappings

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

A convergence structure generalizing the order convergence structure on the set of Hausdorff continuous interval functions is defined on the set of minimal usco maps. The properties of the obtained convergence space are investigated and essential links with the pointwise convergence and the order convergence are revealed. The convergence structure can be extended to a uniform convergence structure so that the convergence space is complete. The important issue of the denseness of the subset of all continuous functions is also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Anguelov: Dedekind order completion of C(X) by Hausdorff continuous functions. Quaestiones Mathematicae 27 (2004), 153–170.

    MATH  MathSciNet  Google Scholar 

  2. R. Anguelov and E. E. Rosinger: Solving Large Classes of Nonlinear Systems of PDE’s. Computers and Mathematics with Applications 53 (2007), 491–507.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. Anguelov and E. E. Rosinger: Hausdorff Continuous Solutions of Nonlinear PDEs through the Order Completion Method. Quaestiones Mathematicae 28 (2005), 271–285.

    MATH  MathSciNet  Google Scholar 

  4. R. Anguelov and J. H. van der Walt: Order Convergence Structure on C(X). Quaestiones Mathematicae 28 (2005), 425–457.

    MATH  MathSciNet  Google Scholar 

  5. R. Beattie and H.-P. Butzmann: Convergence structures and applications to functional analysis. Kluwer Academic Plublishers, Dordrecht, Boston, London, 2002.

    MATH  Google Scholar 

  6. J. Borwein and I. Kortezov: Constructive minimal uscos. C.R. Bulgare Sci 57 (2004), 9–12.

    MATH  MathSciNet  Google Scholar 

  7. M. Fabian: Gâteaux differentiability of convex functions and topology: weak Asplund spaces. Wiley-Interscience, New York, 1997.

  8. R. W. Hansell, J. E. Jayne and M. Talagrand: First class selectors for weakly upper semi-continuous multi-valued maps in Banach spaces. J. Reine Angew. Math. 361 (1985), 201–220.

    MATH  MathSciNet  Google Scholar 

  9. W. A. Luxemburg and A. C. Zaanen: Riesz Spaces I. North-Holland, Amsterdam, London, 1971.

    MATH  Google Scholar 

  10. O. Kalenda: Stegall compact spaces which are not fragmentable. Topol. Appl. 96 (1999), 121–132.

    Article  MATH  MathSciNet  Google Scholar 

  11. O. Kalenda: Baire-one mappings contained in a usco map. Comment. Math. Univ. Carolinae 48 (2007), 135–145.

    MathSciNet  Google Scholar 

  12. B. Sendov: Hausdorff approximations. Kluwer Academic, Boston, 1990.

    MATH  Google Scholar 

  13. J. Spurný: Banach space valued mappings of the first Baire class contained in usco mappings. Comment. Math. Univ. Carolinae 48 (2007), 269–272.

    Google Scholar 

  14. V. V. Srivatsa: Baire class 1 selectors for upper semicontinuous set-valued maps. Trans. Amer. Math. Soc. 337 (1993), 609–624.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Anguelov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anguelov, R., Kalenda, O.F.K. The convergence space of minimal USCO mappings. Czech Math J 59, 101–128 (2009). https://doi.org/10.1007/s10587-009-0008-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-009-0008-4

Keywords

MSC 2000

Navigation