Skip to main content
Log in

Existence, uniqueness and regularity of stationary solutions to inhomogeneous Navier-Stokes equations in ℝn

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

For a bounded domain Ω ⊂ ℝn, n ⩾ 3, we use the notion of very weak solutions to obtain a new and large uniqueness class for solutions of the inhomogeneous Navier-Stokes system − Δu + u · ∇u + ∇p = f, div u = k, u |aΩ = g with uL q, qn, and very general data classes for f, k, g such that u may have no differentiability property. For smooth data we get a large class of unique and regular solutions extending well known classical solution classes, and generalizing regularity results. Moreover, our results are closely related to those of a series of papers by Frehse & Růžička, see e.g. Existence of regular solutions to the stationary Navier-Stokes equations, Math. Ann. 302 (1995), 669–717, where the existence of a weak solution which is locally regular is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Adams: Sobolev Spaces. Academic Press, New York, 1975.

    MATH  Google Scholar 

  2. H. Amann: Nonhomogeneous Navier-Stokes equations with integrable low-regularity data. Int. Math. Ser., Kluwer Academic/Plenum Publishing, New York, 2002, pp. 1–28.

    Google Scholar 

  3. H. Amann: Navier-Stokes equations with nonhomogeneous Dirichlet data. J. Nonlinear Math. Physics 10 (2003), 1–11.

    Article  MathSciNet  Google Scholar 

  4. W. Borchers and T. Miyakawa: Algebraic L 2 decay for Navier-Stokes flows in exterior domains. Hiroshima Math. J. 21 (1991), 621–640.

    MATH  MathSciNet  Google Scholar 

  5. M. E. Bogovskij: Solution of the first boundary value problem for the equation of continuity of an incompressible medium. Soviet Math. Dokl. 20 (1979), 1094–1098.

    MATH  Google Scholar 

  6. M. Cannone: Viscous flows in Besov spaces. Advances in Math. Fluid Mech., Springer, Berlin, 2000, pp. 1–34.

    Google Scholar 

  7. E. B. Fabes, B. F. Jones and N. M. Rivière: The initial value problem for the Navier-Stokes equations with data in L p. Arch. Rational Mech. Anal. 45 (1972), 222–240.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Farwig and H. Sohr: Generalized resolvent estimates for the Stokes system in bounded and unbounded domains. J. Math. Soc. Japan 46 (1994), 607–643.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. Farwig, G. P. Galdi and H. Sohr: A new class of weak solutions of the Navier-Stokes equations with nonhomogeneous data. J. Math. Fluid Mech. 8 (2006), 423–444.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Frehse and M. Růžička: Weighted estimates for the stationary Navier-Stokes equations. Acta Appl. Math. 37 (1994), 53–66.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Frehse and M. Růžička: Regularity for the stationary Navier-Stokes equations in bounded domains. Arch. Rational Mech. Anal. 128 (1994), 361–380.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. Frehse and M. Růžička: On the regularity of the stationary Navier-Stokes equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (IV) 21 (1994), 63–95.

    MATH  Google Scholar 

  13. J. Frehse and M. Růžička: Existence of regular solutions to the stationary Navier-Stokes equations. Math. Ann. 302 (1995), 669–717.

    Article  Google Scholar 

  14. J. Frehse and M. Růžička: Existence of regular solutions to the steady Navier-Stokes equations in bounded six-dimensional domains. Ann. Sc. Norm. Super. Pisa Cl. Sci. (IV) 23 (1996), 701–719.

    MATH  Google Scholar 

  15. J. Frehse and M. Růžička: Regularity for steady solutions of the Navier-Stokes equations J. G. Heywood, et al. (eds.), Theory of the Navier-Stokes equations. Proc. 3rd Intern. Conf. Navier-Stokes Equations: theory and numerical methods. World Scientific Ser. Adv. Math. Appl. Sci., Singapore 47 (1998), 159–178.

    Google Scholar 

  16. J. Frehse and M. Růžička: A new regularity criterion for steady Navier-Stokes equations. Differential Integral Equations 11 (1998), 361–368.

    MATH  MathSciNet  Google Scholar 

  17. D. Fujiwara and H. Morimoto: An L r -theory of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo (1A) 24 (1977), 685–700.

    MATH  MathSciNet  Google Scholar 

  18. G. P. Galdi: An Introduction to the Mathematical Theory of the Navier-Stokes Equations; Linearized Steady Problems. Springer Tracts in Natural Philosophy, Vol. 38, Springer-Verlag, New York, 1998.

    Google Scholar 

  19. G. P. Galdi: An Introduction to the Mathematical Theory of the Navier-Stokes Equations; Nonlinear Steady Problems. Springer Tracts in Natural Philosophy, Vol. 39, New York, 1998.

  20. G. P. Galdi, C. G. Simader and H. Sohr: A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in W −1/q,q(∂Ω). Math. Ann. 331 (2005), 41–74.

    Article  MATH  MathSciNet  Google Scholar 

  21. C. Gerhardt: Stationary solutions of the Navier-Stokes equations in dimension four. Math. Z. 165 (1979), 193–197.

    Article  MATH  MathSciNet  Google Scholar 

  22. Y. Giga: Analyticity of the semigroup generated by the Stokes operator in L r -spaces. Math. Z. 178 (1981), 287–329.

    Article  MathSciNet  Google Scholar 

  23. Y. Giga: Domains of fractional powers of the Stokes operator in L r -spaces. Arch. Rational Mech. Anal. 89 (1985), 251–265.

    Article  MATH  MathSciNet  Google Scholar 

  24. Y. Giga and H. Sohr: On the Stokes operator in exterior domains. J. Fac. Sci. Univ. Tokyo, Sec. IA 36 (1989), 103–130.

    MathSciNet  Google Scholar 

  25. Y. Giga and H. Sohr: Abstract L q-estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains. J. Funct. Anal. 102 (1991), 72–94.

    Article  MATH  MathSciNet  Google Scholar 

  26. T. Kato: Strong L p-solutions to the Navier-Stokes equations in ℝm with applications to weak solutions. Math. Z. 187 (1984), 471–480.

    Article  MATH  MathSciNet  Google Scholar 

  27. H. Kozono and M. Yamazaki: Local and global solvability of the Navier-Stokes exterior problem with Cauchy data in the space L n,∞. Houston J. Math. 21 (1995), 755–799.

    MATH  MathSciNet  Google Scholar 

  28. J. Nečas: Les Méthodes Directes en Théorie des Équations Elliptiques. Academia, Prague, 1967.

    Google Scholar 

  29. C. G. Simader and H. Sohr: A new approach to the Helmholtz decomposition and the Neumann problem in L q-spaces for bounded and exterior domains. Adv. Math. Appl. Sci., World Scientific 11 (1992), 1–35.

    MathSciNet  Google Scholar 

  30. V. A. Solonnikov: Estimates for solutions of nonstationary Navier-Stokes equations. J. Soviet Math. 8 (1977), 467–528.

    Article  MATH  Google Scholar 

  31. H. Sohr: The Navier-Stokes equations. An elementary functional analytic approach. Birkhäuser Advanced Texts, Birkhäuser Verlag, Basel, 2001.

    Google Scholar 

  32. R. Temam: Navier-Stokes Equations. Theory and numerical analysis. North-Holland, Amsterdam, New York, Tokyo, 1984.

    Google Scholar 

  33. H. Triebel: Interpolation Theory, Function Spaces. Differential Operators. North-Holland, Amsterdam, 1978.

    Google Scholar 

  34. W. von Wahl: Regularity of weak solutions of the Navier-Stokes equations. Proc. Symp. Pure Math. 45 (1986), 497–503.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Farwig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farwig, R., Sohr, H. Existence, uniqueness and regularity of stationary solutions to inhomogeneous Navier-Stokes equations in ℝn . Czech Math J 59, 61–79 (2009). https://doi.org/10.1007/s10587-009-0005-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-009-0005-7

Keywords

MSC 2000

Navigation