Skip to main content
Log in

On the vanishing viscosity method for first order differential-functional IBVP

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

We consider the initial-boundary value problem for first order differential-functional equations. We present the ‘vanishing viscosity’ method in order to obtain viscosity solutions. Our formulation includes problems with a retarded and deviated argument and differential-integral equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Alvarez and A. Tourin: Viscosity solutions of nonlinear integro-differential equations. Ann. Inst. H. Poincaré anal. Non Linaire 13 (1996), 293–317.

    MATH  MathSciNet  Google Scholar 

  2. M. Bardi, M. G. Crandall, L. C. Evans, H. M. Soner and P. E. Souganidis: Viscosity Solutions and Applications. Springer-Verlag Berlin-Heidelberg-New York, 1997.

    Book  Google Scholar 

  3. P. Brandi and R. Ceppitelli: On the existance of solutions of nonlinear functional partial differential equations of the first order. Atti Sem. Mat. Fis. Univ. Modena 29 (1980), 166–186.

    MATH  MathSciNet  Google Scholar 

  4. P. Brandi and R. Ceppitelli: Existence, uniqueness and continuous dependence for a hereditary nonlinear functional partial differential equation of the first order. Ann. Polon. Math. 47 (1986), 121–136.

    MATH  MathSciNet  Google Scholar 

  5. S. Brzychczy: Chaplygin’s method for a system of nonlinear parabolic differential-functional equations. Differen. Urav. 22 (1986), 705–708. (In Russian.)

    MATH  MathSciNet  Google Scholar 

  6. S. Brzychczy: Existence of solutions for non-linear systems of differential-functional equations of parabolic type in an arbitrary domain. Ann. Polon. Math. 47 (1987), 309–317.

    MATH  MathSciNet  Google Scholar 

  7. M. G. Crandall, H. Ishii and P. L. Lions: User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 (1992), 1–67.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. G. Crandall and P. L. Lions: Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277 (1983), 1–42.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. K. Hale and S. M. V. Lunel: Introduction to Functional Differential Equations. Springer-Verlag New York, 1993.

    MATH  Google Scholar 

  10. H. Ishii and S. Koike: Viscosity solutions of functional differential equations. Adv. Math. Sci. Appl. Gakkotosho, Tokyo 3 (1993/94), 191–218.

    MathSciNet  Google Scholar 

  11. E. R. Jakobsen and K. H. Karlsen: Continuous dependence estimates for viscosity solutions of integro-PDFs. J. Differential Equations 212 (2005), 278–318.

    Article  MATH  MathSciNet  Google Scholar 

  12. Z. Kamont: Initial value problems for hyperbolic differential-functional systems. Boll. Un. Mat. Ital. 171 (1994), 965–984.

    MathSciNet  Google Scholar 

  13. S. N. Kruzkov: Generalized solutions of first order nonlinear equations in several independent variables I. Mat. Sb. 70 (1966), 394–415; II, Mat.Sb. (N.S) 72 (1967), 93–116. (In Russian.)

    MathSciNet  Google Scholar 

  14. O. A. Ladyzhenskaya, V. A. Solonikov and N. N. Uralceva: Linear and Quasilinear Equations of Parabolic Type. Nauka, Moskva, 1967 (In Russian.);. Translation of Mathematical Monographs, Vol. 23, Am. Math. Soc., Providence, R.I..

    Google Scholar 

  15. P. L. Lions: Generalized Solutions of Hamilton-Jacobi Equations. Pitman, London, 1982.

    MATH  Google Scholar 

  16. A. Sayah: Equations d’Hamilton-Jacobi du premier ordre avec termes integro-differentiales, Parties I & II. Comm. Partial Differential Equations 16 (1991), 1057–1093.

    Article  MATH  MathSciNet  Google Scholar 

  17. K. Topolski: On the uniqueness of viscosity solutions for first order partial differential-functional equations. Ann. Polon. Math. 59 (1994), 65–75.

    MATH  MathSciNet  Google Scholar 

  18. K. Topolski: Parabolic differential-functional inequalities in a viscosity sense. Ann. Polon. Math. 68 (1998), 17–25.

    MATH  MathSciNet  Google Scholar 

  19. K. A. Topolski: On the existence of classical solutions for differential-functional IBVP. Abstr. Appl. Anal. 3 (1998), 363–375.

    Article  MathSciNet  Google Scholar 

  20. K. A. Topolski: On the existence of viscosity solutions for the differential-functional Cauchy problem. Comment. Math. 39 (1999), 207–223.

    MATH  MathSciNet  Google Scholar 

  21. Krzysztof A. Topolski: On the existence of viscosity solution for the parabolic differential-functional Cauchy problem. Preprint.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof A. Topolski.

Additional information

Supported by KBN grant 2 PO3A, 01811.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Topolski, K.A. On the vanishing viscosity method for first order differential-functional IBVP. Czech Math J 58, 927–947 (2008). https://doi.org/10.1007/s10587-008-0061-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-008-0061-4

Keywords

Navigation