Skip to main content
Log in

Continuity versus nonexistence for a class of linear stochastic Cauchy problems driven by a Brownian motion

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

Let A = d/dθ denote the generator of the rotation group in the space C(Γ), where Γ denotes the unit circle. We show that the stochastic Cauchy problem

$$dU(t) = AU(t) + f db_t , U(0) = 0$$
((1))

, where b is a standard Brownian motion and fC(Γ) is fixed, has a weak solution if and only if the stochastic convolution process t ↦ (f * b)t has a continuous modification, and that in this situation the weak solution has a continuous modification. In combination with a recent result of Brzeźniak, Peszat and Zabczyk it follows that (1) fails to have a weak solution for all fC(Γ) outside a set of the first category.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Brzeźniak: Some remarks on stochastic integration in 2-smooth Banach spaces. Probabilistic Methods in Fluids (I. M. Davies, A. Truman et. al., eds.). World Scientific, New Jersey, 2003, pp. 48–69.

    Google Scholar 

  2. Z. Brzeźniak, J. M. A. M. van Neerven: Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem. Studia Math. 143 (2000), 43–74.

    MathSciNet  MATH  Google Scholar 

  3. Z. Brzeźniak, Sz. Peszat, and J. Zabczyk: Continuity of stochastic convolutions. Czechoslovak Math. J. 51 (2001), 679–684.

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Da Prato, J. Zabczyk: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  5. G. Da Prato and J. Zabczyk: Ergodicity for Infinit-Dimensional Systems. London Math. Soc. Lect. Note Series, Vol. 229. Cambridge University Press, Cambridge, 1996.

    Google Scholar 

  6. E. Hausenblas, J. Seidler: A note on maximal inequality for stochastic convolutions. Czechoslovak Math. J. 51 (2001), 785–790.

    Article  MATH  MathSciNet  Google Scholar 

  7. J.-P. Kahane: Some Random Series of Functions. Second edition. Cambridge Studies in Advanced Mathematics, Vol. 5. Cambridge University Press, Cambridge, 1985.

    Google Scholar 

  8. O. Kallenberg: Foundations of Modern Probability. Second edition. Probability and its Applications. Springer-Verlag, New York, 2002.

    Google Scholar 

  9. S. Kwapień, W. A. Woyczyński: Random Series and Stochastic Integrals: Single and Multiple. Probability and its Applications. Birkhäuser-Verlag, Boston, 1992.

    Google Scholar 

  10. M. Ledoux, M. Talagrand: Probability in Banach Spaces Ergebnisse der Math. und ihrer Grenzgebiete, Vol. 23. Springer-Verlag, Berlin, 1991.

    MATH  Google Scholar 

  11. J. M. A. M. van Neerven, L. Weis: Stochastic integration of functions with values in a Banach space. Studia Math. 166 (2005), 131–170.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dettweiler, J., van Neerven, J. Continuity versus nonexistence for a class of linear stochastic Cauchy problems driven by a Brownian motion. Czech Math J 56, 579–586 (2006). https://doi.org/10.1007/s10587-006-0038-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-006-0038-0

Keywords

Navigation