Skip to main content
Log in

On Harmonic Majorization of the Martin Function at Infinity in a Cone

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

This paper shows that some characterizations of the harmonic majorization of the Martin function for domains having smooth boundaries also hold for cones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Aikawa: Sets of determination for harmonic functions in an NTA domain. J. Math. Soc. Japan 48 (1996), 299–315.

    Article  MATH  MathSciNet  Google Scholar 

  2. H. Aikawa, M. Essen: Potential Theory-Selected Topics. Lecture Notes in Math. Vol. 1633. Springer-Verlag, 1996.

  3. A. Ancona: Positive Harmonic Functions and Hyperbolicity. Lecture Notes in Math. Vol. 1344. Springer-Verlag, 1987, pp. 1–23.

  4. D. H. Armitage, U. Kuran: On positive harmonic majorization of y in ℝn × (0, +∞). J. London Math. Soc. Ser. II 3 (1971), 733–741.

    MathSciNet  MATH  Google Scholar 

  5. D. H. Armitage, S. J. Gardiner: Classical Potential Theory. Springer-Verlag, 2001.

  6. V. S. Azarin: Generalization of a theorem of Hayman on subharmonic functions in an m-dimensional cone Am. Math. Soc. Transl. II. Ser..

  7. A. Beurling: A minimum principle for positive harmonic functions. Ann. Acad. Sci. Fenn. Ser. AI. Math. 372 (1965).

  8. M. Brelot: On Topologies and Boundaries in Potential Theory. Lect. Notes in Math. Vol. 175. Springer-Verlag, 1971.

  9. R. Courant, D. Hilbert: Methods of Mathematical Physics, 1st English edition. Interscience, New York, 1954.

    Google Scholar 

  10. B. E. J. Dahlberg: A minimum principle for positive harmonic functions. Proc. London Math. Soc. 33 (1976), 2380-250.

    MathSciNet  Google Scholar 

  11. J. L. Doob: Classical Potential Theory and its Probabilistic Counterpart. Springer-Verlag, 1984.

  12. D. S. Jerison, C. E. Kenig: Boundary behavior of harmonic functions in non-tangentially accessible domains. Adv. Math. 46 (1982), 80–147.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin, 1977.

    MATH  Google Scholar 

  14. L. L. Helms: Introduction to Potential Theory. Wiley, New York, 1969.

    MATH  Google Scholar 

  15. V. G. Maz'ya: Beurling's theorem on a minimum principle for positive harmonic functions. Zapiski Nauchnykh Seminarov LOMI 30 (1972); (English translation) J. Soviet. Math. 4 (1975), 367–379.

    Google Scholar 

  16. I. Miyamoto, M. Yanagishitam, and H. Yoshida: Beurling-Dahlberg-Sjogren type theorems for minimally thin sets in a cone. Canad. Math. Bull. 46 (2003), 252–264.

    MathSciNet  MATH  Google Scholar 

  17. I. Miyamoto, H. Yoshida: Two criteria of Wiener type for minimally thin sets and rarefied sets in a cone. J. Math. Soc. Japan 54 (2002), 487–512.

    MathSciNet  MATH  Google Scholar 

  18. P. Sjogren: Une propriete des fonctions harmoniques positives d'apres Dahlberg, Seminaire de theorie du potentiel. Lecture Notes in Math. Vol. 563. Springer-Verlag, 1976, pp. 275–282.

  19. E. M. Stein: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, 1970.

  20. H. Yoshida: Nevanlinna norm of a subharmonic function on a cone or on a cylinder. Proc. London Math. Soc. Ser. III 54 (1987), 267–299.

    MATH  Google Scholar 

  21. Y. Zhang: Ensembles equivalents a un point frontiere dans un domaine lipshitzien, Seminaire de theorie du potentiel. Lecture Note in Math. Vol. 1393. Springer-Verlag, 1989, pp. 256–265.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyamoto, I., Yanagishita, M. & Yoshida, H. On Harmonic Majorization of the Martin Function at Infinity in a Cone. Czech Math J 55, 1041–1054 (2005). https://doi.org/10.1007/s10587-005-0085-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-005-0085-y

Keywords

Navigation