Skip to main content
Log in

The Quasi-Canonical Solution Operator to \({\bar \partial }\) Restricted to the Fock-Space

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

We consider the solution operator S: ℱμ,(p,q)L 2(μ)(p, q) to the \({\bar \partial }\)-operator restricted to forms with coefficients in ℱμ = {f: f is entire and ∫n |f(z)|2 dμ(z) < ∞}. Here ℱμ,(p,q) denotes (p,q)-forms with coefficients in ℱμ, L 2(μ) is the corresponding L 2-space and μ is a suitable rotation-invariant absolutely continuous finite measure. We will develop a general solution formula S to \({\bar \partial }\). This solution operator will have the property Sv ⊥ ℱ(p,q)v ∈ ℱ(p,q+1). As an application of the solution formula we will be able to characterize compactness of the solution operator in terms of compactness of commutators of Toeplitz-operators \([T_{\overline {z_i } } ,T_{z_i } ] = [T_{z_i }^* ,T_{z_i } ]\): ℱμL 2(μ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Bargmann: On a Hilbert Space of analytic functions and an associated integral transform. Commun. Pure Appl. Math. 14 (1961), 187–214.

    MATH  MathSciNet  Google Scholar 

  2. S. Fu and E. Straube: Compactness in the \({\bar \partial }\)-Neumann problem. In: Proc. conf. Complex analysis and geometry, Ohio. Ohio State Univ. Math. Res Inst. Publ., 2001, pp. 141–160.

  3. L. Hormander: L 2-estimates and existence theorems for the \({\bar \partial }\) operator. Acta Math. 113 (1965), 89–152.

    MathSciNet  Google Scholar 

  4. S. Axler: The Bergman space, the Bloch space, and commutators of multiplikation-operators. Duke Math. J. 53 (1986), 315–332.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. Arazy, S. Fischer and J. Peetre: Hankel-operators on weighted Bergman spaces. Amer. J. Math. 110 (1988), 989–1053.

    MathSciNet  MATH  Google Scholar 

  6. F. F. Bonsall: Hankel-operators on the Bergman space for the disc. J. London Math. Soc. 33 (1986), 355–364.

    MATH  MathSciNet  Google Scholar 

  7. S. Janson: Hankel-operators between weighted Bergman spaces. Ark. Math. 26 (1988), 205–219.

    MATH  MathSciNet  Google Scholar 

  8. R. Rochberg: Trace ideal criteria for Hankel-operators and commutators. Indiana Univ. Math. J. 31 (1982), 913–925.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. Wallsten: Hankel-operators between weighted Bergman-spaces in the ball. Ark. Math. 28 (1990), 183–192.

    MATH  MathSciNet  Google Scholar 

  10. K. H. Zhu: Hilbert-Schmidt Hankel-operators on the Bergman space. Proc. Amer. Math. Soc. 109 (1990), 721–730.

    MATH  MathSciNet  Google Scholar 

  11. F. Haslinger: The canonical solution operator to \({\bar \partial }\) restricted to spaces of entire functions. Ann. Fac. Sci. Toulouse Math. 11 (2002), 57–70.

    MATH  MathSciNet  Google Scholar 

  12. F. Haslinger: The canonical solution operator to \({\bar \partial }\) restricted to Bergman-spaces. Proc. Amer. Math. Soc. 129 (2001), 3321–3329.

    Article  MATH  MathSciNet  Google Scholar 

  13. L. Hormander: An Introduction to Complex Analysis in Several Variables. Von Nostand, Princeton, 1966.

    Google Scholar 

  14. W. Knirsch: Kompaktheit des \({\bar \partial }\)-Neumann Operators. Dissertation. Universitat Wien, Wien, 2000.

    Google Scholar 

  15. N. Salinas, A. Sheu and H. Upmeier: Toeplitz-operators on pseudoconvex domains and foliation C*-algebras. Ann. Math. 130 (1989), 531–565.

    Article  MathSciNet  Google Scholar 

  16. G. Schneider: Hankel-operators with anti-holomorphic symbols on the Fock-space. Proc. Amer. Math. Soc. 132 (2004), 2399–2409.

    Article  MATH  MathSciNet  Google Scholar 

  17. G. Schneider: Non-compactness of the solution operator to \({\bar \partial }\) on the Fock-space in several dimensions. Math. Nachr. 278 (2005), 312–317.

    Article  MATH  MathSciNet  Google Scholar 

  18. S. Krantz: Compactness of the \({\bar \partial }\)-Neumann operator. Proc. Amer. Math. Soc. 103 (1988), 1136–1138.

    MATH  MathSciNet  Google Scholar 

  19. S. Fu and E. Straube: Compactness of the \({\bar \partial }\)-Neumann problem on convex domains. J. Functional Analysis 159 (1998), 629–641.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, G. The Quasi-Canonical Solution Operator to \({\bar \partial }\) Restricted to the Fock-Space. Czech Math J 55, 947–956 (2005). https://doi.org/10.1007/s10587-005-0079-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-005-0079-9

Keywords

Navigation