Skip to main content

On total restrained domination in graphs

Abstract

In this paper we initiate the study of total restrained domination in graphs. Let G = (V,E) be a graph. A total restrained dominating set is a set S \( \subseteq \) V where every vertex in V - S is adjacent to a vertex in S as well as to another vertex in V - S, and every vertex in S is adjacent to another vertex in S. The total restrained domination number of G, denoted by γ t r (G), is the smallest cardinality of a total restrained dominating set of G. First, some exact values and sharp bounds for γ t r (G) are given in Section 2. Then the Nordhaus-Gaddum-type results for total restrained domination number are established in Section 3. Finally, we show that the decision problem for γ t r (G) is NP-complete even for bipartite and chordal graphs in Section 4.

This is a preview of subscription content, access via your institution.

References

  1. G. S. Domke, J. H. Hattingh et al: Restrained domination in graphs. Discrete Math. 203 (1999), 61–69.

    Google Scholar 

  2. M. A. Henning: Graphs with large restrained domination number. Discrete Math. 197/198 (1999), 415–429.

    Google Scholar 

  3. E. A. Nordhaus and J. W. Gaddum: On complementary graphs. Amer. Math. Monthly 63 (1956), 175–177.

    Google Scholar 

  4. F. Jaeger and C. Payan: Relations du type Nordhaus-Gaddum pour le nombre d’absorption d’un granhe simple. C. R. Acad. Sci. Ser. A 274 (1972), 728–730.

    Google Scholar 

  5. M. R. Garey and D. S. Johnson: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by National Natural Sciences Foundation of China (19871036).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ma, DX., Chen, XG. & Sun, L. On total restrained domination in graphs. Czech Math J 55, 165–173 (2005). https://doi.org/10.1007/s10587-005-0012-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-005-0012-2

Keywords

  • total restrained domination number
  • Nordhaus-Gaddum-type results
  • NP-complete
  • level decomposition