Skip to main content
Log in

A Full Characterization of Multipliers for the Strong ϱ-Integral in the Euclidean Space

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

We study a generalization of the classical Henstock-Kurzweil integral, known as the strong ϱ-integral, introduced by Jarník and Kurzweil. Let \((S_\varrho (E)|| \cdot ||)\) be the space of all strongly ϱ-integrable functions on a multidimensional compact interval E, equipped with the Alexiewicz norm \(|| \cdot ||.\) We show that each element in the dual space of \((S_\varrho (E)|| \cdot ||)\) can be represented as a strong ϱ-integral. Consequently, we prove that fg is strongly ϱ-integrable on E for each strongly ϱ-integrable function f if and only if g is almost everywhere equal to a function of bounded variation (in the sense of Hardy-Krause) on E.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Alexiewicz: Linear functionals on Denjoy-integrable functions. Colloq. Math. 1 (1948), 289–293.

    Google Scholar 

  2. R. A. Gordon: The Integrals of Lebesgue. Denjoy, Perron, and Henstock, Graduate Studies in Mathematics Volume 4, AMS, 1994.

  3. J. Jarník and Kurzweil: Perron-type integration on n-dimensional intervals and its prop-erties. Czechoslovak Math. J. 45 (120) (1995), 79–106.

    Google Scholar 

  4. J. Kurzweil: On multiplication of Perron integrable functions. Czechoslovak Math. J. 23 (98) (1973), 542–566.

    Google Scholar 

  5. J. Kurzweil and J. Jarník: Perron-type integration on n-dimensional intervals as an extension of integration of stepfunctions by strong equiconvergence. Czechoslovak Math. J. 46 (121) (1996), 1–20.

    Google Scholar 

  6. Lee Peng Yee: Lanzhou Lectures on Henstock integration. World Scientific, 1989.

  7. Lee Peng Yee and Rudolf Výborný: The integral: An Easy Approach after Kurzweil and Henstock. Australian Mathematical Society Lecture Series 14, Cambridge University Press, 2000.

  8. Lee Tuo Yeong, Chew Tuan Seng and Lee Peng Yee: Characterisation of multipliers for the double Henstock integrals. Bull. Austral. Math. Soc. 54 (1996), 441–449.

    Google Scholar 

  9. Lee Tuo Yeong: Multipliers for some non-absolute integrals in the Euclidean spaces. Real Anal. Exchange 24 (1998/99), 149–160.

    Google Scholar 

  10. G. Q. Liu: The dual of the Henstock-Kurzweil space. Real Anal. Exchange 22 (1996/97), 105–121.

    Google Scholar 

  11. E. J. McShane: Integration. Princeton Univ. Press, 1944.

  12. Piotr Mikusiński and K. Ostaszewski: The space of Henstock integrable functions II. In: New integrals. Proc. Henstock Conf., Coleraine / Ireland (P. S. Bullen, P. Y. Lee, J. L. Mawhin, P. Muldowney and W. F. Pfeffer, eds.). 1988; Lecture Notes Math. vol. 1419, Springer-Verlag, Berlin, Heideberg, New York, 1990, pp. 136–149.

    Google Scholar 

  13. K. M. Ostaszewski: The space of Henstock integrable functions of two variables. Internat. J. Math. Math. Sci. 11 (1988), 15–22.

    Google Scholar 

  14. S. Saks: Theory of the Integral, second edition. New York, 1964. [

  15. W. L. C. Sargent: On the integrability of a product. J. London Math. Soc. 23 (1948), 28–34.

    Google Scholar 

  16. W. H. Young: On multiple integration by parts and the second theorem of the mean. Proc. London Math. Soc. 16 (1918), 273–293.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuo-Yeong, L. A Full Characterization of Multipliers for the Strong ϱ-Integral in the Euclidean Space. Czechoslovak Mathematical Journal 54, 657–674 (2004). https://doi.org/10.1007/s10587-004-6415-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-004-6415-7

Navigation