Skip to main content
Log in

On Semiconvexity Properties of Rotationally Invariant Functions in Two Dimensions

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

Let f be a function defined on the set M 2×2 of all 2 by 2 matrices that is invariant with respect to left and right multiplications of its argument by proper orthogonal matrices. The function f can be represented as a function \(\tilde f\) of the signed singular values of its matrix argument. The paper expresses the ordinary convexity, polyconvexity, and rank 1 convexity of f in terms of its representation \(\tilde f\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Alibert and B. Dacorogna: An example of a quasiconvex function that is not poly-convex in two dimensions. Arch. Rational Mech. Anal. 117 (1992), 155-166.

  2. G. Aubert: On a counterexample of a rank 1 convex function which is not polyconvex in the case N = 2. Proc. Roy. Soc. Edinburgh 106A (1987), 237-240.

    Google Scholar 

  3. G. Aubert: Necessary and suffcient conditions for isotropic rank-one convex functions in dimension 2. J. Elasticity 39 (1995), 31-46.

    Google Scholar 

  4. G. Aubert and R. Tahraoui: Sur la faible fermeture de certains ensembles de contrainte en élasticité nonlinéaire plane. C. R. Acad. Sci. Paris 290 (1980), 537-540.

    Google Scholar 

  5. G. Aubert and R. Tahraoui: Sur la faible fermeture de certains ensembles de contrainte en élasticite nonlinéaire plane. Arch. Rational Mech. Anal. 97 (1987), 33-58.

    Google Scholar 

  6. J. M. Ball: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1977), 337-403.

    Google Scholar 

  7. B. Dacorogna: Direct Methods in the Calculus of Variations. Springer, Berlin, 1989.

    Google Scholar 

  8. B. Dacorogna and H. Koshigoe: On the different notions of convexity for rotationally invariant functions. Ann. Fac. Sci. Toulouse II (1993), 163-184.

    Google Scholar 

  9. B. Dacorogna and P. Marcellini: A counterexample in the vectorial calculus of varia-tions. In: Material Instabilities in Continuum Mechanics (J. M. Ball, ed.). Clarendon Press, Oxford, 1985/1986, pp. 77-83.

    Google Scholar 

  10. B. Dacorogna and P. Marcellini: Implicit Partial Differential Equations. Birkhäuser, Basel, 1999.

    Google Scholar 

  11. C. B. Morrey, Jr.: Multiple Integrals in the Calculus of Variations. Springer, New York, 1966.

    Google Scholar 

  12. P. Rosakis: Characterization of convex isotropic functions. J. Elasticity 49 (1998), 257-267.

    Google Scholar 

  13. M. Šilhavý: The Mechanics and Thermodynamics of Continuous Media. Springer, Berlin, 1997.

    Google Scholar 

  14. M. Šilhavý: On isotropic rank 1 convex functions. Proc. Roy. Soc. Edinburgh 129A (1999), 1081-1105.

    Google Scholar 

  15. M. Šilhavý: Convexity conditions for rotationally invariant functions in two dimensions. In: Applied Nonlinear Analysis (A. Sequeiraet al., ed.). Kluwer Academic, New York, 1999, pp. 513-530; preprint. Mathematical Institute, Prague, 1997.

    Google Scholar 

  16. M. Šilhavý: Rotationally invariant rank 1 convex functions. Appl. Math. Optim. 44 (2001), 1-15.

    Google Scholar 

  17. M. Šilhavý: Monotonicity of rotationally invariant convex and rank 1 convex functions. Proc. Royal Soc. Edinburgh 132A (2002), 419-435.

    Google Scholar 

  18. M. Šilhavý: Rank 1 Convex hulls of isotropic functions in dimension 2 by 2. Math. Bohem. 126 (2001), 521-529.

    Google Scholar 

  19. M. Šilhavý: An O(n) invariant rank 1 convex function that is not polyconvex. Theor. Appl. Mech. 28-29 (2002), 325-336.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šilhavý, M. On Semiconvexity Properties of Rotationally Invariant Functions in Two Dimensions. Czechoslovak Mathematical Journal 54, 559–571 (2004). https://doi.org/10.1007/s10587-004-6408-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-004-6408-6

Navigation