Skip to main content
Log in

Intrusion detection systems for IoT based on bio-inspired and machine learning techniques: a systematic review of the literature

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Recent technological advancements have significantly expanded both networks and data, thereby introducing new forms of attacks that pose considerable challenges to intrusion detection and network security. With intruders deploying increasingly diverse attack vectors, the need for robust Intrusion Detection Systems (IDSes) has become paramount. IDS serves as a crucial tool for monitoring network traffic to uphold the integrity, confidentiality, and availability of systems. Despite the integration of Machine Learning (ML) and Deep Learning (DL) algorithms into IDS frameworks, achieving higher accuracy levels while minimizing false alarms remains a challenging task, especially when handling large datasets. In response to this challenge, researchers have turned to bio-inspired algorithms as potential solutions to enhance IDS models. This paper undertakes a comprehensive literature review focusing on augmenting the security of Internet of Things (IoT) networks by integrating bio-inspired methodologies with ML and DL techniques. Among 145 published articles, 25 relevant studies were selected to address the defined research objectives. The findings underscore the efficacy of combining bio-inspired techniques with ML and DL approaches in enhancing IDS performance, highlighting their potential to bolster IoT network security. Furthermore, the review incorporates a comparative analysis of the selected articles, considering various factors, and outlines ongoing challenges and future directions in integrating bio-inspired techniques with ML and DL algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study

Research data policy

Data supporting the results and analysis of this study are available on request from the corresponding author.

References

  1. Ahmad, Z., Shahid Khan, A., Wai Shiang, C., Abdullah, J., Ahmad, F.: Network intrusion detection system: a systematic study of machine learning and deep learning approaches. Trans. Emerg. Telecommun. Technol. 32(1), e4150 (2021)

    Article  Google Scholar 

  2. Khan, I.A., Moustafa, N., Pi, D., Sallam, K.M., Zomaya, A.Y., Li, B.: A new explainable deep learning framework for cyber threat discovery in industrial iot networks. IEEE Internet Things J. 9(13), 11604–11613 (2021)

    Article  Google Scholar 

  3. Harbi, Y., Aliouat, Z., Refoufi, A., Harous, S.: Recent security trends in internet of things: a comprehensive survey. IEEE Access 9, 113292–113314 (2021)

    Article  Google Scholar 

  4. Gherbi, C., Senouci, O., Harbi, Y., Medani, K., Aliouat, Z.: A systematic literature review of machine learning applications in IoT. Int. J. Commun. Syst. 36(11), e5500 (2023)

    Article  Google Scholar 

  5. Ferrag, M.A., Maglaras, L., Moschoyiannis, S., Janicke, H.: Deep learning for cyber security intrusion detection: approaches, datasets, and comparative study. J. Inf. Secur. Appl. 50, 102419 (2020)

    Google Scholar 

  6. Darwish, A.: Bio-inspired computing: algorithms review, deep analysis, and the scope of applications. Future Comput. Inform. J. 3(2), 231–246 (2018)

    Article  MathSciNet  Google Scholar 

  7. Balasaraswathi, V.R., Sugumaran, M., Hamid, Y.: Feature selection techniques for intrusion detection using non-bio-inspired and bio-inspired optimization algorithms. J. Commun. Inf. Netw. 2, 107–119 (2017)

    Article  Google Scholar 

  8. Alamiedy, T.A., Anbar, M., Al-Ani, A.K., Al-Tamimi, B.N.,Faleh, N.: Review on feature selection algorithms for anomaly-based intrusion detection system. In Recent Trends in Data Science and Soft Computing: Proceedings of the 3rd International Conference of Reliable Information and Communication Technology (IRICT 2018), pages 605–619. Springer, 2019

  9. Kumar, S., Gupta, S., Arora, S.: Research trends in network-based intrusion detection systems: A review. IEEE Access 9, 157761–157779 (2021)

    Article  Google Scholar 

  10. Di Mauro, M., Galatro, G., Fortino, G., Liotta, A.: Supervised feature selection techniques in network intrusion detection: a critical review. Eng. Appl. Artif. Intell. 101, 104216 (2021)

    Article  Google Scholar 

  11. Mahendran, A., et al.: Issues and solution techniques for iot security privacy-a survey. Int. J. Comput. Digital Syst. 12(1), 909–928 (2022)

    MathSciNet  Google Scholar 

  12. Al-Garadi, M.A., Mohamed, A., Al-Ali, A.K., Du, X., Ali, I., Guizani, M.: A survey of machine and deep learning methods for internet of things (iot) security. IEEE Commun. Surv. Tutor. 22(3), 1646–1685 (2020)

    Article  Google Scholar 

  13. Lansky, J., Ali, S., Mohammadi, M., Majeed, M.K., Karim, S.H., Rashidi, S., Hosseinzadeh, M., Rahmani, A.M.: Deep learning-based intrusion detection systems: a systematic review. IEEE Access 9, 101574–101599 (2021)

    Article  Google Scholar 

  14. RC, J.S., Parkavi,K: Investigations on bio-inspired algorithm for network intrusion detection–a review. Evol. Intell. 9 (2022)

  15. Saranya, T., Sridevi, S., Deisy, C., Chung, T.D., Khan, M.A.: Performance analysis of machine learning algorithms in intrusion detection system: a review. Procedia Comput. Sci. 171, 1251–1260 (2020)

    Article  Google Scholar 

  16. Keele, S. et al.: Guidelines for performing systematic literature reviews in software engineering (2007)

  17. Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2, 45–66 (2001)

    Google Scholar 

  18. Li,Wenchao, Yi,Ping, Wu,Yue ,Pan,Li, Li,Jianhua. et al. A new intrusion detection system based on knn classification algorithm in wireless sensor network. Journal of Electrical and Computer Engineering, 2014, 2014

  19. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  20. Cutler, D.R., Edwards, T.C., Jr., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J., Lawler, J.J.: Random forests for classification in ecology. Ecology 88(11), 2783–2792 (2007)

    Article  Google Scholar 

  21. D’Agostini, G.: A multidimensional unfolding method based on bayes’ theorem. Nucl. Instrum. Methods Phys. Res. Sect. A 362(2–3), 487–498 (1995)

    Article  Google Scholar 

  22. Muhsen, A.R., Jumaa, G.G., Al Bakri, N.F., Sadiq, A.T.: Feature selection strategy for network intrusion detection system (nids) using meerkat clan algorithm. Int. J. Interact. Mob. Technol. (2021). https://doi.org/10.3991/ijim.v15i16.24173

    Article  Google Scholar 

  23. Churcher, A., Ullah, R., Ahmad, J., Ur Rehman, S., Masood, F., Gogate, M., Alqahtani, F., Nour, B., Buchanan, W.J.: An experimental analysis of attack classification using machine learning in IoT networks. Sensors 21(2), 446 (2021)

    Article  Google Scholar 

  24. Saritas, M.M., Yasar, A.: Performance analysis of ANN and Naive Bayes classification algorithm for data classification. Int. J. Intell. Syst. Appl. Eng. 7(2), 88–91 (2019)

    Article  Google Scholar 

  25. Bangyal, W.H., Ahmad, J., Rauf, H.T., Shakir, R.: Evolving artificial neural networks using opposition based particle swarm optimization neural network for data classification. In 2018 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), pages 1–6. IEEE, 2018

  26. Abd Jalil, K., Kamarudin, M.H, Masrek, M.N.: Comparison of machine learning algorithms performance in detecting network intrusion. In 2010 international conference on networking and information technology, pages 221–226. IEEE, 2010

  27. Kotsiantis, S.B.: Decision trees: a recent overview. Artif. Intell. Rev. 39, 261–283 (2013)

    Article  Google Scholar 

  28. Rai, K., Devi, M.S., Guleria, A.: Decision tree based algorithm for intrusion detection. Int. J. Adv. Netw. Appl. 7(4), 2828 (2016)

    Google Scholar 

  29. Al Tawil, A., Sabri, K.E.: A feature selection algorithm for intrusion detection system based on moth flame optimization. In 2021 International Conference on Information Technology (ICIT), pages 377–381. IEEE, 2021

  30. Woźniak, M., Grana, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Inf. Fusion 16, 3–17 (2014)

    Article  Google Scholar 

  31. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recog. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  32. Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J. R. Stat. Soc. Ser. C 28(1), 100–108 (1979)

    Google Scholar 

  33. Kumari, R., Singh, M.K., Jha, R., Singh, N.K., et al.: Anomaly detection in network traffic using k-mean clustering. In: 2016 3rd international conference on recent advances in information technology (RAIT), pages 387–393. IEEE, 2016

  34. Li, Z., Li, Y., Xu, L.: Anomaly intrusion detection method based on k-means clustering algorithm with particle swarm optimization. In: 2011 international conference of information technology, computer engineering and management sciences, volume 2, pages 157–161. IEEE, 2011

  35. Bhattacharya, S., S, S.R., Maddikunta, P.K., Kaluri, R., Singh, S., Gadekallu, T.R., Alazab, M.: Tariq UA novel pca-firefly based xgboost classification model for intrusion detection in networks using gpu. Electronics 9(2), 219 (2020)

    Article  Google Scholar 

  36. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proc. 20th int. conf. very large data bases, VLDB, volume 1215, pages 487–499. Santiago, Chile (1994)

  37. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  38. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  39. Chung, J., Gulcehre, C., Cho, K.H., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014

  40. Deng, L.: A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Trans. Signal Inf. Process. 3, e2 (2014)

    Google Scholar 

  41. Hinton, G.E.: A practical guide to training restricted Boltzmann machines. In: Neural Networks: Tricks of the Trade: Second Edition, pp. 599–619. Springer (2012)

  42. Binitha, S., Siva Sathya, S., et al.: A survey of bio inspired optimization algorithms. Int. J. Soft Comput. Eng. 2(2), 137–151 (2012)

    Google Scholar 

  43. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    Google Scholar 

  44. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014)

  45. Ganaie, M.A., Hu, M., Malik, A.K., Tanveer, M., Suganthan, P.N.: Ensemble deep learning: a review. Eng. Appl. Artif. Intell. 1(115), 105151 (2022)

    Article  Google Scholar 

  46. Husain, M.S.: Nature inspired approach for intrusion detection systems. Design and analysis of security protocol for communication, pp. 171–182 (2020)

  47. Atashpaz-Gargari, E., Lucas, C.: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: 2007 IEEE Congress on Evolutionary Computation, pp. 4661–4667. IEEE (2007)

  48. Krishnanand, K.R., Nayak, S.K., Panigrahi, B.K., Rout, P.K.: Comparative study of five bio-inspired evolutionary optimization techniques. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), pages 1231–1236. IEEE (2009)

  49. Elsayed, S., Sarker, R., Essam, D.: Survey of uses of evolutionary computation algorithms and swarm intelligence for network intrusion detection. Int. J. Comput. Intell. Appl. 14(04), 1550025 (2015)

    Article  Google Scholar 

  50. Roy, S., Biswas, S., Chaudhuri, S.S.: Nature-inspired swarm intelligence and its applications. Int. J. Mod. Educ. Comput. Sci. 6(12), 55 (2014)

    Article  Google Scholar 

  51. Raj, M.G., Pani, S.K.: A meta-analytic review of intelligent intrusion detection techniques in cloud computing environment. Int. J. Adv. Comput. Sci. Appl. (2021). https://doi.org/10.14569/ijacsa.2021.0121023

    Article  Google Scholar 

  52. Saheed, Y.K., Arowolo, M.O., Tosho, A.U.: An efficient hybridization of k-means and genetic algorithm based on support vector machine for cyber intrusion detection system. Int. J. Electr. Eng. Inform. 14(2), 426–442 (2022)

    Google Scholar 

  53. Crosbie, M., Spafford, G., et al.: Applying genetic programming to intrusion detection. In: Working Notes for the AAAI Symposium on Genetic Programming, pages 1–8. Cambridge, MA: MIT Press (1995)

  54. Back, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)

    Book  Google Scholar 

  55. Popoola, E., Adewumi, A.O.: Efficient feature selection technique for network intrusion detection system using discrete differential evolution and decision. Int. J. Netw. Secur. 19(5), 660–669 (2017)

    Google Scholar 

  56. El-Ghamry, A., Gaber, T., Mohammed, K.K., Hassanien, A.E.: Optimized and efficient image-based iot malware detection method. Electronics 12(3), 708 (2023)

    Article  Google Scholar 

  57. Bakro, M., Kumar, R.R., Alabrah, A., Ashraf, Z., Ahmed, M.N., Shameem, M., Abdelsalam, A.: An improved design for a cloud intrusion detection system using hybrid features selection approach with ML classifier. IEEE Access 11, 64228–64247 (2023)

    Article  Google Scholar 

  58. Almomani, O.: A hybrid model using bio-inspired metaheuristic algorithms for network intrusion detection system. Comput. Mater. Contin. (2021). https://doi.org/10.32604/cmc.2021.016113

    Article  Google Scholar 

  59. Kalaivani, S., Gopinath, G.: Modified bee colony with bacterial foraging optimization based hybrid feature selection technique for intrusion detection system classifier model. ICTACT J Soft Comput. (2020)

  60. Al-Yaseen, W.L.: Improving intrusion detection system by developing feature selection model based on firefly algorithm and support vector machine. IAENG Int. J. Comput. Sci. 46(4), 534–540 (2019)

    Google Scholar 

  61. Mazini, M., Shirazi, B., Mahdavi, I.: Anomaly network-based intrusion detection system using a reliable hybrid artificial bee colony and adaboost algorithms. J. King Saud Univ. 31(4), 541–553 (2019)

    Google Scholar 

  62. Xu, H., Cao, Q., Fu, H., Fu, C., Chen, H., Su, J.,: Application of support vector machine model based on an improved elephant herding optimization algorithm in network intrusion detection. In Artificial Intelligence: Second CCF International Conference, ICAI 2019, Xuzhou, China, August 22-23, 2019, Proceedings 2, pages 283–295. Springer, 2019

  63. Pingale, S.V., Sutar, S.R.: Remora based deep maxout network model for network intrusion detection using convolutional neural network features. Comput. Electr. Eng. 110, 108831 (2023)

    Article  Google Scholar 

  64. Narengbam, L., Dey, S.: Wifi intrusion detection using artificial neurons with bio-inspired optimization algorithm. Procedia Comput. Sci. 218, 1238–1246 (2023)

    Article  Google Scholar 

  65. Deore, B., Bhosale, S.: Hybrid optimization enabled robust cnn-lstm technique for network intrusion detection. IEEE Access 10, 65611–65622 (2022)

    Article  Google Scholar 

  66. Anushiya, R., Lavanya, V.S.: A new deep-learning with swarm based feature selection for intelligent intrusion detection for the internet of things. Meas. Sens. 26, 100700 (2023)

    Article  Google Scholar 

  67. Dahou, A., Abd Elaziz, M., Chelloug, S.A., Awadallah, M.A., Al-Betar, M.A., Al-Qaness, M.A., Forestiero, A.: Intrusion detection system for iot based on deep learning and modified reptile search algorithm. Comput. Intell. Neurosci (2022). https://doi.org/10.1155/2022/6473507

    Article  Google Scholar 

  68. Benmessahel, I., Xie, K., Chellal, M., Semong, T.: A new evolutionary neural networks based on intrusion detection systems using locust swarm optimization. Evol. Intell. 12, 131–146 (2019)

    Article  Google Scholar 

  69. Khare, N., Devan, P., Chowdhary, C.L., Bhattacharya, S., Singh, G., Singh, S., Yoon, B.: Smo-dnn: Spider monkey optimization and deep neural network hybrid classifier model for intrusion detection. Electronics 9(4), 692 (2020)

    Article  Google Scholar 

  70. Garg, S., Kaur, K., Kumar, N., Kaddoum, G., Zomaya, A.Y., Ranjan, R.: A hybrid deep learning-based model for anomaly detection in cloud datacenter networks. IEEE Trans. Netw. Serv. Manag. 16(3), 924–35 (2019)

    Article  Google Scholar 

  71. Dwivedi, S., Vardhan, M., Tripathi, S.: Building an efficient intrusion detection system using grasshopper optimization algorithm for anomaly detection. Clust. Comput., pp.1-20 (2021)

  72. Ghanem, W.A., Ghaleb, S.A., Jantan, A., Nasser, A.B., Saleh, S.A., Ngah, A., Alhadi, A.C., Arshad, H., Saad, A.M., Omolara, A.E., El-Ebiary, Y.A., et al.: Cyber intrusion detection system based on a multiobjective binary bat algorithm for feature selection and enhanced bat algorithm for parameter optimization in neural networks. IEEE Access 10, 76318–76339 (2022)

    Article  Google Scholar 

  73. Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)

    Article  Google Scholar 

  74. Chen, H., Zhu, Y.: Optimization based on symbiotic multi-species coevolution. Appl. Math. Comput. 205(1), 47–60 (2008)

    MathSciNet  Google Scholar 

  75. Liu, C., Yang, J., Chen, R., Zhang, Y., Zeng, J.: Research on immunity-based intrusion detection technology for the internet of things. In: 2011 Seventh International conference on natural computation, volume 1, pages 212–216. IEEE (2011)

  76. Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G., Vázquez, E.: Anomaly-based network intrusion detection: techniques, systems and challenges. Comput. Secur. 28(1–2), 18–28 (2009)

    Article  Google Scholar 

  77. Zarpelão, B.B., Miani, R.S., Kawakani, C.T., de Alvarenga, S.C.: A survey of intrusion detection in internet of things. J. Netw. Comput. Appl. 84, 25–37 (2017)

    Article  Google Scholar 

  78. Bostani, H., Sheikhan, M.: Hybrid of anomaly-based and specification-based ids for internet of things using unsupervised opf based on mapreduce approach. Comput. Commun. 98, 52–71 (2017)

    Article  Google Scholar 

  79. Mukkamala, S., Janoski, G., Sung, A.: Intrusion detection using neural networks and support vector machines. In: Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN’02 (Cat. No. 02CH37290), volume 2, pp.1702–1707. IEEE (2002)

  80. Milenkoski, A., Vieira, M., Kounev, S., Avritzer, A., Payne, B.D.: Evaluating computer intrusion detection systems: a survey of common practices. ACM Comput. Surv. 48(1), 1–41 (2015)

    Article  Google Scholar 

  81. Vijayanand, R., Devaraj, D.: A novel feature selection method using whale optimization algorithm and genetic operators for intrusion detection system in wireless mesh network. IEEE Access 8, 56847–56854 (2020)

    Article  Google Scholar 

  82. Sydney, M.K.: An advanced intrusion detection system for iiot based on ga and tree based algorithms. IEEE Access 9, 113199–113212 (2021)

    Article  Google Scholar 

  83. Hassan, I.H., Abdullahi, M., Aliyu, M.M., Yusuf, S.A., Abdulrahim, A.: An improved binary manta ray foraging optimization algorithm based feature selection and random forest classifier for network intrusion detection. Intell. Syst. Appl. 16, 200114 (2022)

    Google Scholar 

  84. Sokkalingam, S., Ramakrishnan, R.: An intelligent intrusion detection system for distributed denial of service attacks: a support vector machine with hybrid optimization algorithm based approach. Concurr. Comput. Pract. Exp. 34(27), e7334 (2022)

    Article  Google Scholar 

  85. Anzum Tonni, Z., Mazumder, R.: A novel feature selection technique for intrusion detection system using rf-rfe and bio-inspired optimization. In: 2023 57th Annual Conference on Information Sciences and Systems (CISS), pages 1–6. IEEE (2023)

  86. Moizuddin, M.D., Victor Jose, M.: A bio-inspired hybrid deep learning model for network intrusion detection. Knowl. Based Syst. 238, 107894 (2022)

    Article  Google Scholar 

  87. Kaviarasan, S., Geetha, A.: Network intrusion detection based on one-dimensional cnn with chimp optimization algorithm. J. Theor. Appl. Inf. Technol. 101(10) (2023)

  88. Kilichev, D., Kim, W.: Hyperparameter optimization for 1d-cnn-based network intrusion detection using ga and pso. Mathematics 11(17), 3724 (2023)

    Article  Google Scholar 

Download references

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

CG, ZA, and YH organized the paper's structure, while AK created figures 4 and 5, and RS conducted the writing and the implementation. All authors contributed to reviewing the manuscript.

Corresponding author

Correspondence to Rafika Saadouni.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadouni, R., Gherbi, C., Aliouat, Z. et al. Intrusion detection systems for IoT based on bio-inspired and machine learning techniques: a systematic review of the literature. Cluster Comput (2024). https://doi.org/10.1007/s10586-024-04388-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10586-024-04388-5

Keywords

Navigation