Skip to main content
Log in

Malicious detection model with artificial neural network in IoT-based smart farming security

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The Internet of Things (IoT) tunes modern technologies, including wireless sensors and cloud computing, to create a homogeneous and highly effective environment. Therefore, IoT has emerged in various fields of life, such as healthcare, industry, and agriculture. Agriculture is among the primary components of developing nations’ financial states and is vital in maintaining human life. However, the human capacity to reproduce far exceeds the capability of our planet to secure the food required for our lives. Hence, the emergence of IoT in this industry has seen essential advancements to help boost agriculture production and quality. In addition, this emergence exposes the smart agriculture environment to considerable cyber threats. This paper presents a network intrusion detection system (NIDS) to mitigate smart agriculture security vulnerabilities. We developed our framework using radial basis functions neural networks (RBFNN) to detect and classify intrusions in the IoT network. To get our model to perform in its best form, we applied crowd wisdom tree-based machine learning (ML) techniques to select relevant features from the datasets, such as random Forrest (RF), AdaBoost (ADA), extra trees (ET), LightGBM (LGBM), and XGBoost (XGB). We implemented a single-class support vector machine (1-CSVM) to detect and remove outliers. We evaluated our model using NF-Bot-IoT and NF-ToN-IoT datasets. It scored 99.25% accuracy (ACC) and 82.97% Matthews correlation coefficient (MCC) and 90.05% MCC and 96.92% ACC on preprocessed NF-Bot-IoT and NF-ToN-IoT, respectively. Our model showed outstanding performance in overcoming the NF-Bot-IoT dataset imbalance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data will be made available on request.

Notes

  1. https://staff.itee.uq.edu.au/marius/NIDS_datasets/#RA3.

  2. https://staff.itee.uq.edu.au/marius/NIDS_datasets/#RA2.

References

  1. Thomas, M.: An Essay on the Principle of Population, 1st edn. J. Johnson, London (1798)

    Google Scholar 

  2. Phasinam, K., Kassanuk, T., Shabaz, M.: Applicability of internet of things in smart farming. J. Food Qual. 2022, 1–7 (2022)

    Google Scholar 

  3. Kassanuk, T., Phasinam, K.: Design of blockchain based smart agriculture framework to ensure safety and security. Mater. Today 51, 2313–2316 (2022)

    Google Scholar 

  4. Vangala, A., Das, A.K., Chamola, V., Korotaev, V., Rodrigues, J.J.: Security in IoT-enabled smart agriculture: architecture, security solutions and challenges. Clust. Comput. 26(2), 879–902 (2023)

    Google Scholar 

  5. Chanal, P.M., Kakkasageri, M.S.: Security and privacy in IoT: a survey. Wirel. Pers. Commun. 115, 1667–1693 (2020)

    Google Scholar 

  6. Azrour, M., Mabrouki, J., Guezzaz, A., Kanwal, A.: Internet of things security: challenges and key issues. Secur. Commun. Netw. 2021, 1–11 (2021)

    Google Scholar 

  7. Azrour, M., Mabrouki, J., Guezzaz, A., Farhaoui, Y.: New enhanced authentication protocol for internet of things. Big Data Mining Anal. 4(1), 1–9 (2021)

    Google Scholar 

  8. Poluru, R.K., Reddy, M.P.K., Kaluri, R., Lakshmanna, K., Reddy, G.T.: Agribot. In: Goundar, S., BharathBhushan, S., Rayani, P.K. (eds.) Architecture and Security Issues in Fog Computing Applications, pp. 151–157. IGL Global, Pennsylvania (2020)

    Google Scholar 

  9. Ullo, S.L., Sinha, G.R.: Advances in IoT and smart sensors for remote sensing and agriculture applications. Remote Sens. 13(13), 2585 (2021)

    Google Scholar 

  10. Haque, M.A., Haque, S., Sonal, D., Kumar, K., Shakeb, E.: WITHDRAWN: security enhancement for IoT enabled agriculture. Mater. Today (2021). https://doi.org/10.1016/j.matpr.2020.12.452

    Article  Google Scholar 

  11. Gòmez-Chabla, R., Real-Avilés, K., Moràn, C., Grijalva, P., Recalde, T.: IoT applications in agriculture: A systematic literature review. In: 2nd International conference on ICTs in agronomy and environment (2018).

  12. Al Asif, M.R., Hasan, K.F., Islam, M.Z., Khondoker, R.: STRIDE-based cyber security threat modeling for IoT-enabled precision agriculture systems. In: 2021 3rd International Conference on Sustainable Technologies for Industry 4.0 (STI) (2021)

  13. Mohy-eddine, M., Guezzaz, A., Benkirane, S., Azrour, M.: IoT-enabled SMART agriculture: security issues and applications. In: Farhaoui, Y., Rocha, A., Brahmia, Z., Bhushab, B. (eds.) The International Conference on Artificial Intelligence and Smart Environment. Springer, Cham (2022)

    Google Scholar 

  14. Sontowski, S., Gupta, M., Chukkapalli, S.S.L., Abdelsalam, M., Mittal, S., Joshi, A., Sandhu, R.: Cyber attacks on smart farming infrastructure. In: 2020 IEEE 6th International Conference on Collaboration and Internet Computing (CIC) (2020).

  15. Demestichas, K., Peppes, N., Alexakis, T.: Survey on security threats in agricultural IoT and smart farming. Sensors 10(22), 6458 (2020)

    Google Scholar 

  16. Gupta, M., Abdelsalam, M., Khorsandroo, S., Mittal, S.: Security and privacy in smart farming: challenges and opportunities. IEEE Access 8, 34564–34584 (2020)

    Google Scholar 

  17. Huang, H., Ye, P., Hu, M., Wu, J.: A multi-point collaborative DDoS defense mechanism for IIoT environment. Digit. Commun. Netw. 9(2), 590–601 (2023)

    Google Scholar 

  18. Sangaiah, A.K., Javadpour, A., Jafari, F., Pinto, P., Ahmadi, H., Zhang, W.: CL-MLSP: The design of a detection mechanism for sinkhole attacks in smart cities. Microprocessors Microsyst. 90, 104504 (2022)

    Google Scholar 

  19. Dehalwar, V., Kolhe, M.L., Deoli, S., Jhariya, M.K.: Blockchain-based trust management and authentication of devices in smart grid. Clean. Eng. Technol. 8, 100481 (2022)

    Google Scholar 

  20. Khan, M.A., Khan Khattk, M.A., Latif, S., Shah, A.A., Ur Rehman, M., Boulila, W., Driss, M., Ahmad, J.: Voting classifier-based intrusion detection for iot networks. In: Advances on Smart and Soft Computing: Proceedings of ICACIn (2021).

  21. Sengupta, J., Ruj, S., Bit, S.D.: A comprehensive survey on attacks, security issues and blockchain solutions for IoT and IIoT. J. Netw. Comput. Appl. 149, 102481 (2020)

    Google Scholar 

  22. Patil, D.R., Pattewar, T.M.: Majority voting and feature selection based network intrusion detection system. EAI Endorsed Trans. Scalable Inf. Syst. 9(6), e6–e6 (2022)

    Google Scholar 

  23. Douiba, M., Benkirane, S., Guezzaz, A., Azrour, M.: Anomaly detection model based on gradient boosting and decision tree for IoT environments security. J. Reliable Intell. Environ. 9(4), 421–432 (2023)

    Google Scholar 

  24. Quy, V.K., Hau, N.V., Anh, D.V., Quy, N.M., Ban, N.T., Lanza, S., Randazzo, G., Muzirafuti, A.: IoT-enabled smart agriculture: architecture, applications, and challenges. Appl. Sci. 12(7), 3396 (2022)

    Google Scholar 

  25. Bwambale, E., Abagale, F.K., Anornu, G.K.: Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: a review. Agric. Water Manag. 260, 107324 (2022)

    Google Scholar 

  26. Melgar-Garcia, L., Gutierrez-Aviles, D., Godinho, M.T., Espada, R., Brito, I.S., Martinez-Alvarez, F., Troncoso, A., Rubio-Escudero, C.: A new big data triclustering approach for extracting three-dimensional patterns in precision agriculture. Neurocomputing 500, 268–278 (2022)

    Google Scholar 

  27. Aquilani, C., Confessore, A., Bozzi, R., Sirtori, F., Pugliese, C.: Precision livestock farming technologies in pasture-based livestock systems. Animal 16(1), 100429 (2022)

    Google Scholar 

  28. Maraveas, C., Piromalis, D., Arvanitis, K., Bartzanas, T., Loukatos, D.: Applications of IoT for optimized greenhouse environment and resources management. Comput. Electron. Agric. 198, 106993 (2022)

    Google Scholar 

  29. Sinha, B.B., Dhanalakshmi, R.: Recent advancements and challenges of Internet of Things in smart agriculture: a survey. Future Gener. Comput. Syst. 126, 169–184 (2022)

    Google Scholar 

  30. Rouzbahani, H.M., Karimipour, H., Fraser, E., Dehghantanha, A., Duncan, E., Green, A., Russell, C.: Communication Layer security in smart farming: a survey on wireless technologies. (2022) https://arxiv.org/2203.06013

  31. Kansal, N., Bhushan, B., Sharma, S.: Architecture, security vulnerabilities, and the proposed countermeasures in Agriculture-Internet-of-Things (AIoT) Systems. Internet Things Anal. Agric. 3, 329–353 (2022)

    Google Scholar 

  32. Kasongo, S.M.: An advanced intrusion detection system for IIoT based on GA and tree based algorithms. IEEE Access 9, 113199–113212 (2021)

    Google Scholar 

  33. Guezzaz, A., Asimi, A., Asimi, Y., Azrour, M., Benkirane, S.: A distributed intrusion detection approach based on machine leaning techniques for a cloud security. In: Gherabi, N., Kacprzyk, J. (eds.) Intelligent Systems in Big Data, Semantic Web and Machine Learning, pp. 85–94. Springer, Cham (2021)

    Google Scholar 

  34. Guezzaz, A., Benkirane, S., Azrour, M.: A novel anomaly network intrusion detection system for internet of things security. In: Azrour, M., Irshad, A., Chaganti, R. (eds.) IoT and Smart Devices for Sustainable Environment, pp. 129–138. Springer, Cham (2022)

    Google Scholar 

  35. Karopoulos, G., Kambourakis, G., Chatzoglou, E., Hernandez-Ramos, J.L., Kouliaridis, V.: Demystifying in-vehicle intrusion detection systems: a survey of surveys and a meta-taxonomy. Electronics 11(7), 1072 (2022)

    Google Scholar 

  36. Guezzaz, A., Benkirane, S., Azrour, M., Khurram, S.: A reliable network intrusion detection approach using decision tree with enhanced data quality. Secur. Commun. Netw. 2021, 1–8 (2021)

    Google Scholar 

  37. Guezzaz, A., Asimi, Y., Azrour, M., Asimi, A.: Mathematical validation of proposed machine learning classifier for heterogeneous traffic and anomaly detection. Big Data Mining Anal. 4(1), 18–24 (2021)

    Google Scholar 

  38. Raghuvanshi, A., Singh, U.K., Sajja, G.S., Pallathadka, H., Asenso, E., Kamal, M., Singh, A., Phasinam, K.: Intrusion detection using machine learning for risk mitigation in IoT-enabled smart irrigation in smart farming. J. Food Qual. 2022, 1–8 (2022)

    Google Scholar 

  39. Adkisson, M., Kimmell, J.C., Gupta, M., Abdelsalam, M.: Autoencoder-based anomaly detection in smart farming ecosystem. In: 2021 IEEE International Conference on Big Data (Big Data) (2021).

  40. Nguyen, X.-H., Nguyen, X.-D., Huynh, H.-H., Le, K.-H.: Realguard: a lightweight network intrusion detection system for IoT gateways. Sensors 22(2), 432 (2022)

    Google Scholar 

  41. Guezzaz, A., Azrour, M., Benkirane, S., Mohy-Eddine, M., Attou, H., Douiba, M.: A lightweight hybrid intrusion detection framework using machine learning for edge-based IIoT security. Int. Arab J. Inf. Technol. 19(5), 822–830 (2022)

    Google Scholar 

  42. Javeed, D., Gao, T., Khan, M.T., Shoukat, D.: A hybrid intelligent framework to combat sophisticated threats in secure industries. Sensors 22(4), 1582 (2022)

    Google Scholar 

  43. Alanazi, M., Aljuhani, A.: Anomaly detection for Internet of Things cyberattacks. Comput. Mater. Contin. 72(1), 261–279 (2022)

    Google Scholar 

  44. Malik, R., Singh, Y., Sheikh, Z.A., Anand, P., Singh, P.K., Workneh, T.C.: An improved deep belief network ids on IoT-based network for traffic systems. J. Adv. Transp. 2022, 1–7 (2022)

    Google Scholar 

  45. Abbas, A., Khan, M.A., Latif, S., Ajaz, M., Shah, A.A., Ahmad, J.: A new ensemble-based intrusion detection system for internet of things. Arab. J. Sci. Eng. 47, 1–15 (2021)

    Google Scholar 

  46. Tharewal, S., Ashfaque, M.W., Banu, S.S., Uma, P., Hassen, S.M., Shabaz, M.: Intrusion detection system for industrial Internet of Things based on deep reinforcement learning. Wirel. Commun. Mob. Comput. 2022, 1–8 (2022)

    Google Scholar 

  47. Onyema, E.M., Dalal, S., Romero, C.A.T., Seth, B., Young, P., Wajid, M.A.: Design of intrusion detection system based on cyborg intelligence for security of cloud network traffic of smart cities. J. Cloud Comput. 11(1), 1–20 (2022)

    Google Scholar 

  48. Mohy-Eddine, M., Guezzaz, A., Benkirane, S., Azrour, M., Farhaoui, Y.: An ensemble learning based intrusion detection model for industrial iot security. Big Data Mining Anal. 6(3), 273–287 (2023)

    Google Scholar 

  49. Hossain, M.M., Swarna, R.A., Mostafiz, R., Shaha, P., Pinky, L.Y., Rahman, M.M., Rahman, W., Hossain, M.S., Hossain, M.E., Iqbal, M.S.: Analysis of the performance of feature optimization techniques for the diagnosis of machine learning-based chronic kidney disease. Mach. Learn. Appl. 9, 100330 (2022)

    Google Scholar 

  50. Ismail, Z., Jantan, A., Yusoff, M.N., Kiru, M.U.: The effects of feature selection on the classification of encrypted botnet. J. Comput. Virol. Hacking Tech. 17, 61–74 (2021)

    Google Scholar 

  51. Guezzaz, A., Asimi, A., Asimi, Y., Tbatou, Z., Sadqi, Y.: A global intrusion detection system using PcapSockS Sniffer and multilayer perceptron classifier. Int. J. Netw. Secur. 21(3), 438–450 (2019)

    Google Scholar 

  52. Gu, J., Wang, L., Wang, H., Wang, S.: A novel approach to intrusion detection using SVM ensemble with feature augmentation. Comput. Secur. 86, 53–62 (2019)

    Google Scholar 

  53. Sarhan, M., Layeghy, S., Moustafa, N., Portmann, M.: Netflow datasets for machine learning-based network intrusion detection systems. In: Big Data Technologies and Applications: 10th EAI International Conference, BDTA 2020, and 13th EAI International Conference on Wireless Internet, WiCON 2020, Virtual Event, December 11, 2020, Proceedings 10, Springer, pp. 117–135 (2021).

  54. Koroniotis, N., Moustafa, N., Sitnikova, E., Turnbull, B.: Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset. Future Gener. Comput. Syst. 100, 779–796 (2019)

    Google Scholar 

  55. Mohy-eddine, M., Guezzaz, A., Benkirane, S., Azrour, M.: An intrusion detection model using election-based feature selection and K-NN. Microprocess. Microsyst. (2023). https://doi.org/10.1016/j.micpro.2023.104966

    Article  Google Scholar 

  56. Moustafa, N.: A new distributed architecture for evaluating AI-based security systems at the edge: Network TON_IoT datasets. Sustain. Cities Soc. 72, 102994 (2021)

    Google Scholar 

  57. Chicco, D., Jurman, G.: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 21(1), 1–13 (2020)

    Google Scholar 

  58. Lo, W.W., Layeghy, S., Sarhan, M., Gallagher, M., Portmann, M.: E-graphsage: A graph neural network based intrusion detection system for IoT. In NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium, IEEE, pp. 1–9 (2022).

  59. Jayalaxmi, P., Kumar, G., Saha, R., Conti, M., Kim, T.-H., Thomas, R.: DeBot: a deep learning-based model for bot detection in industrial internet-of-things. Comput. Electr. Eng. 102, 108214 (2022)

    Google Scholar 

  60. Sarhan, M., Layeghy, S., Portmann, M.: Feature analysis for ML-based IIoT intrusion detection. (2021).

  61. Chen, C.-M., Zhang, Z., Ming-TaiWu, J., Lakshmanna, K.: High utility periodic frequent pattern mining in multiple sequences. CMES-Comput. Model. Eng. Sci. 137(1), 733–759 (2023)

    Google Scholar 

Download references

Funding

This study was not funded and without financial support. We did this research work as professors of computer sciences at the university.

Author information

Authors and Affiliations

Authors

Contributions

Mouaad Mohy-eddine: Conceptualization, Methodology, Software. Azidine Guezzaz: Data curation, Writing- Original draft preparation, Writing-Reviewing and Editing. Said Benkirane: Visualization, Investigation, Supervision. MouradeAzrour: Software, Validation.

Corresponding author

Correspondence to Azidine Guezzaz.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohy-eddine, M., Guezzaz, A., Benkirane, S. et al. Malicious detection model with artificial neural network in IoT-based smart farming security. Cluster Comput 27, 7307–7322 (2024). https://doi.org/10.1007/s10586-024-04334-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-024-04334-5

Keywords

Navigation