Skip to main content
Log in

A novel sparrow search algorithm with integrates spawning strategy

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Sparrow Search Algorithm (SSA) has recently received more attention in the intelligent optimization group. However, the high randomness and local optimal problems of the algorithm limit the application of the algorithm. In this paper, a novel sparrow search algorithm (NSSA) combined with spawning technology is proposed, which effectively improves the problem of the algorithm falling into local optimization. First of all, it is proposed to replace the traditional stochastic method with the good point set theory to find the initial individual, so that the initial population is more evenly distributed in the search space and improve the quality of the initial solution. Secondly, the spawning strategy of the cuckoo algorithm is integrated into the discoverer stage, which improves the search method of the discoverer and enhances the global search ability, which makes the algorithm avoids the sudden decline of population diversity and premature convergence. Finally, Levy flight and Brownian motion are used to disturb the position of the sparrow dimension by dimension to improve the ability of the algorithm to jump out of the local optimal value in subsequent iterations. By comparing and analyzing NSSA and SSA, DE, ALO, GOA, DOA, HSSA and XSSA algorithms in 12 common evaluation functions and CEC-2017 test functions, and apply NSSA to the TSP problem. The simulation results show the effectiveness and superiority of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sun, G., Han, R., Deng, L., Li, C., Yang, G.: Hierarchical structure-based joint operations algorithm for global optimization. Swarm Evol. Comput. 101311 (2023)

  2. Sun, G., Yang, G., Zhang, G.: Two-level parameter cooperation-based population regeneration framework for differential evolution. Swarm Evol. Comput. 75, 101122 (2022)

    Article  Google Scholar 

  3. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks , vol. 4, pp. 1942–1948 (1995). IEEE

  4. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43 (1995). IEEE

  5. Dorigo, M., Di Caro, G.: Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, vol. 2, pp. 1470–1477 (1999). IEEE

  6. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)

    Article  Google Scholar 

  7. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  8. Mirjalili, S.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015)

    Article  Google Scholar 

  9. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 89, 228–249 (2015)

    Article  Google Scholar 

  10. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Article  Google Scholar 

  11. Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H.: Harris hawks optimization: algorithm and applications. Futur. Gener. Comput. Syst. 97, 849–872 (2019)

    Article  Google Scholar 

  12. Faramarzi, A., Heidarinejad, M., Mirjalili, S., Gandomi, A.H.: Marine predators algorithm: a nature-inspired metaheuristic. Expert Syst. Appl. 152, 113377 (2020)

    Article  Google Scholar 

  13. Li, S., Chen, H., Wang, M., Heidari, A.A., Mirjalili, S.: Slime mould algorithm: a new method for stochastic optimization. Futur. Gener. Comput. Syst. 111, 300–323 (2020)

    Article  Google Scholar 

  14. Xue, J., Shen, B.: A novel swarm intelligence optimization approach: sparrow search algorithm. Syst. Sci. Control Eng. 8(1), 22–34 (2020)

    Article  Google Scholar 

  15. Bairwa, A.K., Joshi, S., Singh, D.: Dingo optimizer: a nature-inspired metaheuristic approach for engineering problems. Math. Probl. Eng. 2021, 1–12 (2021)

    Article  Google Scholar 

  16. Xue, J., Shen, B.: Dung beetle optimizer: a new meta-heuristic algorithm for global optimization. J. Supercomput. 1–32 (2022)

  17. Xin, L., Xiaodong, M., Jun, Z., Zhen, W.: Chaotic sparrow search optimization algorithm. J. Beijing Univ. Aeronaut. Astronaut. 47(8), 1712–1720 (2021)

    Google Scholar 

  18. Jianhua, L., Zhiheng, W.: A hybrid sparrow search algorithm based on constructing similarity. IEEE Access 9, 117581–117595 (2021)

    Article  Google Scholar 

  19. Ouyang, C., Zhu, D., Wang, F.: A learning sparrow search algorithm. Comput. Intell. Neurosci. 2021 (2021)

  20. Tang, Y., Li, C., Li, S., Cao, B., Chen, C.: A fusion crossover mutation sparrow search algorithm. Math. Probl. Eng. 2021 (2021)

  21. Zikai, W., Xueyu, H., Donglin, Z., Shaoqiang, Y., Quan, L., Wei, G.: Learning sparrow search algorithm that hybrids boundary processing mechanisms. J. Beijing Univ. Aeronaut. Astronaut. (2022)

  22. Zikai, W., Xueyu, H., Donglin, Z., Wei, G.: Improved sparrow search algorithm combining ranking-based elastic collision. J. Front. Comput. Sci. Technol. 1 (2022)

  23. Rajabioun, R.: Cuckoo optimization algorithm. Appl. Soft Comput. 11(8), 5508–5518 (2011)

    Article  Google Scholar 

  24. Herbadji, D., Derouiche, N., Belmeguenai, A., Herbadji, A., Boumerdassi, S.: A tweakable image encryption algorithm using an improved logistic chaotic map. Traitement du Signal 36(5), 407–417 (2019)

    Article  Google Scholar 

  25. Arora, S., Anand, P.: Chaotic grasshopper optimization algorithm for global optimization. Neural Comput. Appl. 31(8), 4385–4405 (2019)

    Article  Google Scholar 

  26. Tian, D.: Particle swarm optimization with chaos-based initialization for numerical optimization. Intell. Autom. Soft Comput. 1–12 (2017)

  27. Mirjalili, S., Lewis, A.: Adaptive gbest-guided gravitational search algorithm. Neural Comput. Appl. 25(7), 1569–1584 (2014)

    Article  Google Scholar 

  28. Zhang, L., Zhang, B.: Good point set based genetic algorithm. Chin. J. Comput. Chin. Ed. 24(9), 917–922 (2001)

    MathSciNet  Google Scholar 

  29. Li, W., Wang, G.-G., Gandomi, A.H.: A survey of learning-based intelligent optimization algorithms. Archiv. Comput. Methods Eng. 28(5), 3781–3799 (2021)

    Article  MathSciNet  Google Scholar 

  30. Li, W., Wang, G.-G., Alavi, A.H.: Learning-based elephant herding optimization algorithm for solving numerical optimization problems. Knowl.-Based Syst. 195, 105675 (2020)

    Article  Google Scholar 

  31. Li, W., Wang, G.-G.: Elephant herding optimization using dynamic topology and biogeography-based optimization based on learning for numerical optimization. Eng. Comput. 38(2), 1585–1613 (2022)

    Article  Google Scholar 

  32. Brown, C.T., Liebovitch, L.S., Glendon, R.: Lévy flights in dobe ju/’hoansi foraging patterns. Hum. Ecol. 35(1), 129–138 (2007)

    Article  Google Scholar 

  33. Pavlyukevich, I.: Lévy flights, non-local search and simulated annealing. J. Comput. Phys. 226(2), 1830–1844 (2007)

  34. Kamaruzaman, A.F., Zain, A.M., Yusuf, S.M., Udin, A.: Levy flight algorithm for optimization problems-a literature review. Appl. Mech. Mater. 421, 496–501 (2013)

    Article  Google Scholar 

  35. Wang, M.C., Uhlenbeck, G.E.: On the theory of the Brownian motion II. Rev. Mod. Phys. 17(2–3), 323 (1945)

    Article  MathSciNet  Google Scholar 

  36. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  37. Mirjalili, S.Z., Mirjalili, S., Saremi, S., Faris, H., Aljarah, I.: Grasshopper optimization algorithm for multi-objective optimization problems. Appl. Intell. 48(4), 805–820 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Natural Science Foundation of China (Nos. 62006213, 62102373), Henan Provincial Science and Technology Research Project No. 222102320321, Henan Youth Talent Promotion Project No. 2022HYTP005. Starry Sky Maker Space Incubation Project Zhengzhou University of Light Industry (No. 2021ZCKJ306).

Author information

Authors and Affiliations

Authors

Contributions

JZ: Conceptualization, methodology, validation, investigation, data curation, resources, writing—original, draft. LL: Conceptualization, methodology, software, validation, methodology, writing—review, writing—editing. HZ: Conceptualization, methodology, analysis, resources, supervision. FW: Conceptualization, methodology, validation analysis, review and editing, visualization. YT: Conceptualization, methodology, validation analysis, review and editing, visualization.

Corresponding author

Correspondence to Linwei Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Li, L., Zhang, H. et al. A novel sparrow search algorithm with integrates spawning strategy. Cluster Comput 27, 1753–1773 (2024). https://doi.org/10.1007/s10586-023-04036-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-023-04036-4

Keywords

Navigation