Skip to main content

Advertisement

Log in

Improved Harris Hawks optimization for global optimization and engineering design

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Harris Hawks Optimization (HHO) is a novel meta-heuristic optimization algorithm. The algorithm is inspired by the behavior of Harris Hawks collaborating with each other to pursue prey in nature. The algorithm has the advantages of simple structure, fewer parameters, easy implementation, and excellent performance on high-dimensional problems. However, the algorithm also suffers from the inability to strike a good balance between exploration and exploitation, low convergence accuracy, and slow convergence speed in the early stage. In response to these defects, this paper will introduce three strategies to the HHO: a non-negative stochastic shrinkage exponential energy function, a Cauchy-Gaussian-based dynamic variance reduction selection strategy, and a greedy-difference-based selection strategy. The improved algorithm TSHHO is analyzed on the well-established 28 benchmark test functions, and four industrial engineering design problems. The experimental results show that the TSHHO algorithm proposed in this paper can achieve a better balance in the exploration and development stages,the strategies significantly improve the search efficiency, convergence accuracy, and robustness of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Chen, H., Zhang, Q., Luo, J., Xu, Y., Zhang, X.: An enhanced bacterial foraging optimization and its application for training kernel extreme learning machine. Appl. Soft Comput. 86, 105884 (2020)

    Google Scholar 

  2. Aljarah, I., Mafarja, M., Heidari, A.A., Faris, H., Zhang, Y., Mirjalili, S.: Asynchronous accelerating multi-leader salp chains for feature selection. Appl. Soft Comput. 71, 964–979 (2018)

    Google Scholar 

  3. Chen, H., Yang, C., Heidari, A.A., Zhao, X.: An efficient double adaptive random spare reinforced whale optimization algorithm. Expert Syst. Appl. 154, 113018 (2020)

    Google Scholar 

  4. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

    Google Scholar 

  5. Deng, W., Zhao, H., Zou, L., Li, G., Yang, X., Wu, D.: A novel collaborative optimization algorithm in solving complex optimization problems. Soft Comput. 21(15), 4387–4398 (2017)

    Google Scholar 

  6. Wang, M., Chen, H.: Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Appl. Soft Comput. 88, 105946 (2020)

    Google Scholar 

  7. Oliva, D., Abd El Aziz, M., Hassanien, A.E.: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm. Appl. Energy 200, 141–154 (2017)

    Google Scholar 

  8. Ibrahim, R.A., Abd Elaziz, M., Oliva, D., Lu, S.: An improved runner-root algorithm for solving feature selection problems based on rough sets and neighborhood rough sets. Appl. Soft Comput. 97, 105517 (2020)

    Google Scholar 

  9. Rasku, J., Musliu, N., Kärkkäinen, T.: On automatic algorithm configuration of vehicle routing problem solvers. J. Vehicle Routing Algorithms 2(1), 1–22 (2019)

    Google Scholar 

  10. Ma, H.-J., Xu, L.-X., Yang, G.-H.: Multiple environment integral reinforcement learning-based fault-tolerant control for affine nonlinear systems. IEEE Trans. Cyber. 51(4), 1913–1928 (2019)

    Google Scholar 

  11. Abualigah, L., Abd Elaziz, M., Sumari, P., Geem, Z.W., Gandomi, A.H.: Reptile search algorithm (rsa): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 191, 116158 (2022)

    Google Scholar 

  12. Agushaka, J.O., Ezugwu, A.E., Abualigah, L.: Gazelle optimization algorithm: a novel nature-inspired metaheuristic optimizer. Neural Comput. Appl. 1–33 (2022)

  13. Agushaka, J.O., Ezugwu, A.E., Abualigah, L.: Dwarf mongoose optimization algorithm. Comput. Methods Appl. Mech. Eng. 391, 114570 (2022)

    MathSciNet  Google Scholar 

  14. Ezugwu, A.E., Agushaka, J.O., Abualigah, L., Mirjalili, S., Gandomi, A.H.: Prairie dog optimization algorithm. Neural Comput. Appl. 34(22), 20017–20065 (2022)

    Google Scholar 

  15. Singh, S., Singh, H., Mittal, N., Hussien, A.G., Sroubek, F.: A feature level image fusion for night-vision context enhancement using arithmetic optimization algorithm based image segmentation. Expert Syst. Appl. 209, 118272 (2022)

    Google Scholar 

  16. Hussien, A.G., Hashim, F.A., Qaddoura, R., Abualigah, L., Pop, A.: An enhanced evaporation rate water-cycle algorithm for global optimization. Processes 10(11), 2254 (2022)

    Google Scholar 

  17. Hussien, A.G., Abualigah, L., Abu Zitar, R., Hashim, F.A., Amin, M., Saber, A., Almotairi, K.H., Gandomi, A.H.: Recent advances in harris hawks optimization: A comparative study and applications. Electronics 11(12), 1919 (2022)

    Google Scholar 

  18. Hussien, A.G.: An enhanced opposition-based salp swarm algorithm for global optimization and engineering problems. J. Ambient. Intell. Humaniz. Comput. 13(1), 129–150 (2022)

    Google Scholar 

  19. Wang, S., Hussien, A.G., Jia, H., Abualigah, L., Zheng, R.: Enhanced remora optimization algorithm for solving constrained engineering optimization problems. Mathematics 10(10), 1696 (2022)

    Google Scholar 

  20. Zheng, R., Hussien, A.G., Jia, H.-M., Abualigah, L., Wang, S., Wu, D.: An improved wild horse optimizer for solving optimization problems. Mathematics 10(8), 1311 (2022)

    Google Scholar 

  21. Hussien, A.G., Heidari, A.A., Ye, X., Liang, G., Chen, H., Pan, Z.: Boosting whale optimization with evolution strategy and gaussian random walks: an image segmentation method. Eng. Comput. (2022). https://doi.org/10.1007/s00366-021-01542-0

    Article  Google Scholar 

  22. Holland, J.H.: Genetic Algorithms. Sci. Am. 267(1), 66–73 (1992)

    Google Scholar 

  23. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    MathSciNet  Google Scholar 

  24. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Google Scholar 

  25. Dorigo, M., Di Caro, G.: Ant colony optimization: a new meta-heuristic. IEEE 2, 1470–1477 (1999)

    Google Scholar 

  26. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. IEEE (1995). https://doi.org/10.1109/MHS.1995.494215

    Article  Google Scholar 

  27. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J. Global Optim. 39(3), 459–471 (2007)

    MathSciNet  Google Scholar 

  28. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Google Scholar 

  29. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Google Scholar 

  30. Saremi, S., Mirjalili, S., Lewis, A.: Grasshopper optimisation algorithm: theory and application. Adv. Eng. Softw. 105, 30–47 (2017)

    Google Scholar 

  31. Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)

    Google Scholar 

  32. Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., Gandomi, A.H.: The arithmetic optimization algorithm. Comput. Methods Appl. Mech. Eng. 376, 113609 (2021)

    MathSciNet  Google Scholar 

  33. Abualigah, L., Yousri, D., Abd Elaziz, M., Ewees, A.A., Al-Qaness, M.A., Gandomi, A.H.: Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput. Ind. Eng. 157, 107250 (2021)

    Google Scholar 

  34. Hashim, F.A., Hussien, A.G.: Snake optimizer: a novel meta-heuristic optimization algorithm. Knowl.-Based Syst. 242, 10832108320 (2022)

    Google Scholar 

  35. Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H.: Harris hawks optimization: Algorithm and applications. Futur. Gener. Comput. Syst. 97, 849–872 (2019)

    Google Scholar 

  36. Wunnava, A., Naik, M.K., Panda, R., Jena, B., Abraham, A.: A differential evolutionary adaptive harris hawks optimization for two dimensional practical masi entropy-based multilevel image thresholding. J. King Saud University-Comput. Inform. Sci. (2022). https://doi.org/10.1016/j.jksuci.2020.05.001

    Article  Google Scholar 

  37. Chen, H., Jiao, S., Wang, M., Heidari, A.A., Zhao, X.: Parameters identification of photovoltaic cells and modules using diversification-enriched harris hawks optimization with chaotic drifts. J. Clean. Prod. 244, 118778 (2020)

    Google Scholar 

  38. Houssein, E.H., Hosney, M.E., Oliva, D., Mohamed, W.M., Hassaballah, M.: A novel hybrid harris hawks optimization and support vector machines for drug design and discovery. Comput. Chem. Eng. 133, 106656 (2020)

    Google Scholar 

  39. Moayedi, H., Osouli, A., Nguyen, H., Rashid, A.S.A.: A novel harris hawks’ optimization and k-fold cross-validation predicting slope stability. Eng. Comput. 37(1), 369–379 (2021)

    Google Scholar 

  40. Ramadan, A., Kamel, S., Korashy, A., Almalaq, A., Domínguez-García, J.L.: An enhanced harris hawk optimization algorithm for parameter estimation of single, double and triple diode photovoltaic models. Soft Comput. (2022). https://doi.org/10.1007/s00500-022-07109-5

    Article  Google Scholar 

  41. Shao, K., Fu, W., Tan, J., Wang, K.: Coordinated approach fusing time-shift multiscale dispersion entropy and vibrational harris hawks optimization-based svm for fault diagnosis of rolling bearing. Measurement 173, 108580 (2021)

    Google Scholar 

  42. Too, J., Liang, G., Chen, H.: Memory-based harris hawk optimization with learning agents: a feature selection approach. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01479-4

    Article  Google Scholar 

  43. Alweshah, M., Almiani, M., Almansour, N., Al Khalaileh, S., Aldabbas, H., Alomoush, W., Alshareef, A.: Vehicle routing problems based on harris hawks optimization. J. Big Data 9(1), 1–18 (2022)

    Google Scholar 

  44. Abbasi, A., Firouzi, B., Sendur, P., Heidari, A.A., Chen, H., Tiwari, R.: Multi-strategy gaussian harris hawks optimization for fatigue life of tapered roller bearings. Eng. Comput. 38, 4387–4413 (2021)

    Google Scholar 

  45. Yousri, D., Mirjalili, S., Machado, J.T., Thanikanti, S.B., Fathy, A., et al.: Efficient fractional-order modified harris hawks optimizer for proton exchange membrane fuel cell modeling. Eng. Appl. Artif. Intell. 100, 104193 (2021)

    Google Scholar 

  46. Long, W., Jiao, J., Liang, X., Xu, M., Wu, T., Tang, M., Cai, S.: A velocity-guided harris hawks optimizer for function optimization and fault diagnosis of wind turbine. Artif. Intell. Rev. 56(3), 2563–2605 (2022)

    Google Scholar 

  47. Dokeroglu, T., Deniz, A., Kiziloz, H.E.: A robust multiobjective harris’ hawks optimization algorithm for the binary classification problem. Knowl. Based Syst. 227, 107219 (2021)

    Google Scholar 

  48. Abd Elaziz, M., Yang, H., Lu, S.: A multi-leader harris hawk optimization based on differential evolution for feature selection and prediction influenza viruses h1n1. Artif. Intell. Rev. 55(4), 2675–2732 (2022)

    Google Scholar 

  49. Abd Elaziz, M., Yousri, D., Mirjalili, S.: A hybrid harris hawks-moth-flame optimization algorithm including fractional-order chaos maps and evolutionary population dynamics. Adv. Eng. Softw. 154, 102973 (2021)

    Google Scholar 

  50. Hussien, A.G., Amin, M.: A self-adaptive harris hawks optimization algorithm with opposition-based learning and chaotic local search strategy for global optimization and feature selection. Int. J. Mach. Learn. Cybern. 13(2), 309–336 (2022)

    Google Scholar 

  51. Gupta, S., Deep, K., Heidari, A.A., Moayedi, H., Wang, M.: Opposition-based learning harris hawks optimization with advanced transition rules: Principles and analysis. Expert Syst. Appl. 158, 113510 (2020)

    Google Scholar 

  52. Arini, F.Y., Chiewchanwattana, S., Soomlek, C., Sunat, K.: Joint opposite selection (jos): A premiere joint of selective leading opposition and dynamic opposite enhanced harris’ hawks optimization for solving single-objective problems. Expert Syst. Appl. 188, 116001 (2022)

    Google Scholar 

  53. Zhang, Y., Liu, R., Wang, X., Chen, H., Li, C.: Boosted binary harris hawks optimizer and feature selection. Eng. Comput. 37(4), 3741–3770 (2021)

    Google Scholar 

  54. Moustafa, M., Mohd, M.H., Ismail, A.I., Abdullah, F.A.: Dynamical analysis of a fractional-order rosenzweig-macarthur model incorporating a prey refuge. Chaos, Solitons Fractals 109, 1–13 (2018)

    MathSciNet  Google Scholar 

  55. Lan, K.-T., Lan, C.-H.: Notes on the distinction of gaussian and cauchy mutations. In: 2008 Eighth International Conference on Intelligent Systems Design and Applications. IEEE vol. 1, pp. 272–277 (2008)

  56. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

    Google Scholar 

  57. Das, S., Suganthan, P.N.: Differential evolution: A survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2010)

    Google Scholar 

  58. Zhang, Z., Schwartz, S., Wagner, L., Miller, W.: A greedy algorithm for aligning dna sequences. J. Comput. Biol. 7(1–2), 203–214 (2000)

    Google Scholar 

  59. Faramarzi, A., Heidarinejad, M., Mirjalili, S., Gandomi, A.H.: Marine predators algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 152, 113377 (2020)

    Google Scholar 

  60. Salem, S.A.: Boa: A novel optimization algorithm. 1–5 (2012)

  61. Bajaj, I., Arora, A., Hasan, M.: Black-box optimization: methods and applications. 35-63 (2021)

  62. Mirjalili, S.: Sca: a sine cosine algorithm for solving optimization problems. Knowl. Based Syst. 96, 120–133 (2016)

    Google Scholar 

  63. Ehsaeyan, E., Zolghadrasli, A.: Foa: fireworks optimization algorithm. Multimed. Tools Appl. 81, 33151–33170 (2022)

    Google Scholar 

  64. Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27(4), 1053–1073 (2016)

    Google Scholar 

  65. Rao, S.S.: Engineering optimization: theory and practice. (2019)

  66. Sandgren, E.: Nonlinear integer and discrete programming in mechanical design optimization. J. Mech. Design (1990). https://doi.org/10.1115/1.2912596

    Article  Google Scholar 

  67. Arora, J.: Introduction to optimum design. Elsevier, Amsterdam (2004)

    Google Scholar 

  68. Kannan, B., Kramer, S.N.: An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Design (1994). https://doi.org/10.1115/1.2919393

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions.

Funding

This study was supported by the National Natural Science Foundation of China (No. 61535008), the Natural Science Foundation of Tianjin (No. 20JCQNJC00430), the National Natural Science Foundation of China (No. 62203332) and the Science and Technology Research Team in Higher Education Institutions of Hebei Province (No. ZD2018045), Tianjin Research Innovation Project for Postgraduate Students (No. 2022SKYZ309).

Author information

Authors and Affiliations

Authors

Contributions

CL: methodology, writing—reviewing, supervision. FC: data collation and tabulation, writing—reviewing and editing and revise the manuscript; software. MY: Writing—reviewing and editing; plotting the figures.

Corresponding author

Correspondence to Lei Chen.

Ethics declarations

Conflict of interest

We declare that the authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Ethical approval and consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

Not applicable.

Research involving human and animal participants

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Feng, C. & Ma, Y. Improved Harris Hawks optimization for global optimization and engineering design. Cluster Comput 27, 2003–2027 (2024). https://doi.org/10.1007/s10586-023-04020-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-023-04020-y

Keywords

Navigation