Skip to main content

Advertisement

Log in

Energy-aware QoS-based dynamic virtual machine consolidation approach based on RL and ANN

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

One of the most challenging problems in cloud datacenters is the degradation of performance and energy efficiency due to the overutilization of hosts and their exposition to excessive workload. Virtual machine (VM) consolidation and migration from one host to another are strategies that have been proven to successfully bring about performance improvements and energy efficiency. These schemes help in energy optimization by moving VMs experiencing difficulty functioning on an overloaded host to another host. Similarly, by migrating VMs from an underloaded host and consolidating them, unnecessary resources have a chance to be shut down. This makes clear why the accurate detection of overloaded and underloaded hosts is of fundamental importance when energy consumption, quality of services, and service level agreements are targeted. In this paper, an energy-aware QoS-based consolidation algorithm is proposed to dynamically manage VMs in cloud datacenters. The proposed algorithm applies reinforcement learning and artificial neural networks. The first method is used to select a suitable VM for migration, while the latter helps to predict the future state of hosts and detect overloaded and underloaded hosts. We simulated the proposed algorithm using the CloudSim framework and compared it to the baselines and state-of-the-art algorithms. The results show that the proposed approach surpasses other methods in what concerns both performance and energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No data is available for this research.

References

  1. Sadiku, M.N.O., Musa, S.M., Momoh, O.D.: Cloud computing: opportunities and challenges. IEEE Potentials 33(1), 34–36 (2014)

    Article  Google Scholar 

  2. Entezari-Maleki, R., Sousa, L., Movaghar, A.: Performance and power modeling and evaluation of virtualized servers in IaaS clouds. Inf. Sci. 394–395, 106–122 (2017)

    Article  Google Scholar 

  3. Ilager, S., Ramamohanarao, K., Buyya, R.: ETAS: energy and thermal-aware dynamic virtual machine consolidation in cloud data center with proactive hotspot mitigation. Concurr. Comput. Pract. Exp. 31(17), e5221 (2019)

    Article  Google Scholar 

  4. Ataie, E., Entezari-Maleki, R., Etesami, E., Egger, B., Ardagna, D., Movaghar, A.: Power-aware performance analysis of self-adaptive resource management in IaaS clouds. Future Gener. Comput. Syst. 86, 134–144 (2018)

    Article  Google Scholar 

  5. Dias, A.H.T., Correia, L.H.A., Malheiros, N.: A systematic literature review on virtual machine consolidation. ACM Comput. Surv. 54(8), 176:1-176:38 (2022)

    Article  Google Scholar 

  6. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.: Xen and the art of virtualization. ACM SIGOPS Oper. Syst. Rev. 37(5), 164–177 (2003)

    Article  Google Scholar 

  7. Li, P., Guo, S., Miyazaki, T., Liao, X., Jin, H., Zomaya, A.Y., Wang, K.: Traffic-aware geo-distributed big data analytics with predictable job completion time. IEEE Trans. Parallel Distrib. Syst. 28(6), 1785–1796 (2017)

    Article  Google Scholar 

  8. Iosup, A., Ostermann, S., Yigitbasi, M.N., Prodan, R., Fahringer, T., Epema, D.: Performance analysis of cloud computing services for many-tasks scientific computing. IEEE Trans. Parallel Distrib. Syst. 22(6), 931–945 (2011)

    Article  Google Scholar 

  9. Taheri, G., Khonsari, A., Entezari-Maleki, R., Baharloo, M., Sousa, L.: Temperature-aware dynamic voltage and frequency scaling enabled MPSoC modeling using stochastic activity networks. Microprocess. Microsyst. 60, 15–23 (2018)

    Article  Google Scholar 

  10. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, C.L.E., Pratt, I., Warfield, A.: Live migration of virtual machines. In: Proceedings of the 2nd Conference on Symposium on Networked Systems Design and Implementation, 2005, vol. 2(3), pp. 273–286 (2005)

  11. Nelson, M., Lim, B.H., Hutchins, G.: Fast transparent migration for virtual machines. In: Proceedings of the Annual Conference on USENIX Annual Technical Conference, 2005, Anaheim, CA, pp. 472–477 (2005)

  12. Wieder, P., Butler, J.M., Theilmann, W., Yahyapour, R.: Service Level Agreements for Cloud Computing, p. 358. Springer, New York (2011)

    Book  Google Scholar 

  13. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Gener. Comput. Syst. 28(5), 755–768 (2012)

    Article  Google Scholar 

  14. Kumar, E., Sharma, E.: Artificial neural networks—a study. Int. J. Emerg. Eng. Res. Technol. 2(2), 143–148 (2014)

    Google Scholar 

  15. Yu, X., Efe, M., Kaynak, O.: A general backpropagation algorithm for feedforward neural networks learning. IEEE Trans. Neural Netw. 13(1), 251–254 (2002)

    Article  PubMed  Google Scholar 

  16. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)

    Google Scholar 

  17. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming, p. 684. Wiley, Hoboken (1998)

    Google Scholar 

  18. Sözen, A.: Future projection of the energy dependency of Turkey using artificial neural network. Energy Policy 37(11), 4827–4833 (2009)

    Article  Google Scholar 

  19. Azizi, S., Zandsalimi, M., Li, D.: An energy-efficient algorithm for virtual machine placement optimization in cloud data centers. Clust. Comput. 23(4), 3421–3434 (2020)

    Article  Google Scholar 

  20. Khan, A., Zakarya, M., Khan, R., Rahman, I., Khan, M., et al.: An energy, performance efficient resource consolidation scheme for heterogeneous cloud datacenters. J. Netw. Comput. Appl. 150(C), 1084–8045 (2020)

    Google Scholar 

  21. Zeng, J., Ding, D., Kang, K., Xie, H., Yin, Q.: Adaptive DRL-Based virtual machine consolidation in energy-efficient cloud data center. IEEE Trans. Parallel Distrib. Syst. 33(11), 2991–3002 (2022)

    Google Scholar 

  22. Parvizi, E., Rezvani, M.: Utilization-aware energy-efficient virtual machine placement in cloud networks using NSGA-III meta-heuristic approach. Clust. Comput. 23(4), 2945–2967 (2020)

    Article  Google Scholar 

  23. Li, Z., Yu, X., Yu, L., Guo, S., Chang, V.: Energy-efficient and quality-aware VM consolidation method. Future Gener. Comput. Syst. 102, 789–809 (2020)

    Article  Google Scholar 

  24. Khan, M.: An efficient energy-aware approach for dynamic VM consolidation on cloud platforms. Clust. Comput. 24(4), 3293–3310 (2021)

    Article  Google Scholar 

  25. Ranjbari, M., Akbari Torkestani, J.: A learning automata-based algorithm for energy and SLA efficient consolidation of virtual machines in cloud data centers. J. Parallel Distrib. Comput. 113, 55–62 (2018)

    Article  Google Scholar 

  26. Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers. Concurr. Comput. Pract. Exp. 28(5), 1397–1420 (2012)

    Article  Google Scholar 

  27. Monil, M., Rahman, R.: VM consolidation approach based on heuristics, fuzzy logic, and migration control. J. Cloud Comput. 5(1), 8 (2016)

    Article  Google Scholar 

  28. Han, Z., Tan, H., Chen, G., Wang, R., Chen, Y., Lau, F.C.M.: Dynamic virtual machine management via approximate Markov decision process. In: IEEE INFOCOM 2016—The 35th Annual IEEE International Conference on Computer Communications, 2016, San Francisco, CA, USA, pp. 1–9 (2016)

  29. Bellman, R.: A Markovian decision process. Indiana Univ. Math. J. 6(5), 679–684 (1957)

    Article  MathSciNet  Google Scholar 

  30. Rasouli, N., Razavi, R., Faragardi, H.: EPBLA: energy-efficient consolidation of virtual machines using learning automata in cloud data centers. Clust. Comput. 23(4), 3013–3027 (2020)

    Article  Google Scholar 

  31. Wu, Q., Ishikawa, F., Zhu, Q., Xia, Y.: Energy and migration cost-aware dynamic virtual machine consolidation in heterogeneous cloud datacenters. IEEE Trans. Serv. Comput. 12(4), 550–563 (2019)

    Article  Google Scholar 

  32. Hallawi, H., Mehnen, J., He, H.: Multi-capacity combinatorial ordering GA in application to cloud resources allocation and efficient virtual machines consolidation. Future Gener. Comput. Syst. 69, 1–10 (2017)

    Article  Google Scholar 

  33. Monil, M.A.H., Malony, A.D.: QoS-aware virtual machine consolidation in cloud datacenter. In: 2017 IEEE International Conference on Cloud Engineering (IC2E), 2017, Vancouver, BC, Canada, pp. 81–87 (2017)

  34. Telenyk, S., Zharikov, E., Rolik, O.: Consolidation of virtual machines using simulated annealing algorithm. In: 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), 2017, Lviv, Ukraine, pp. 117–121 (2017)

  35. Li, Z., Yan, C., Yu, L., Yu, X.: Energy-aware and multi-resource overload probability constraint-based virtual machine dynamic consolidation method. Future Gener. Comput. Syst. 80, 139–156 (2018)

    Article  Google Scholar 

  36. Lu, S.L., Chen, J.H.: Host overloading detection based on EWMA algorithm in cloud computing environment. In: 2018 IEEE 15th International Conference on e-Business Engineering (ICEBE), 2018, Los Alamitos, CA, USA, pp. 274–279 (2018)

  37. Tarahomi, M., Izadi, M., Ghobaei-Arani, M.: An efficient power-aware VM allocation mechanism in cloud data centers: a micro genetic-based approach. Clust. Comput. 24(2), 919–934 (2021)

    Article  Google Scholar 

  38. Liu, Y., Sun, X., Wei, W., Jing, W.: Enhancing energy-efficient and QoS dynamic virtual machine consolidation method in cloud environment. IEEE Access 6, 31224–31235 (2018)

    Article  Google Scholar 

  39. Aslam, A., Kalra, M.: Using artificial neural network for VM consolidation approach to enhance energy efficiency in green cloud. In: Advances in Data and Information Sciences, pp. 139–154. Springer, Singapore (2019)

  40. Basu, D., Wang, X., Hong, Y., Chen, H., Bressan, S.: Learn-as-you-go with Megh: efficient live migration of virtual machines. IEEE Trans. Parallel Distrib. Syst. 30(8), 1786–1801 (2019)

    Article  Google Scholar 

  41. Rao, J., Bu, X., Xu, C., Wang, L., Yin, G., VCONF: a reinforcement learning approach to virtual machines auto-configuration. In: Proceedings of the 6th International Conference on Autonomic Computing, 2009, New York, NY, USA, pp. 137–146 (2009)

  42. Yazdanov, L., Fetzer, C., VScaler: autonomic virtual machine scaling. In: Proceedings of the 2013 IEEE Sixth International Conference on Cloud Computing, 2013, USA, pp. 212–219 (2013)

  43. Duggan, M., Duggan, J., Howley, E., Barrett, E.: A reinforcement learning approach for the scheduling of live migration from under utilised hosts. Memet. Comput. 9(4), 283–293 (2017)

    Article  Google Scholar 

  44. Ferreto, T., Netto, M., Calheiros, R., Rose, C.D.: Server consolidation with migration control for virtualized data centers. Future Gener. Comput. Syst. 27(8), 1027–1034 (2011)

    Article  Google Scholar 

  45. Calheiros, N., Ranjan, R., Beloglazov, A., Rose, C.A.F.D., Buyya, R.: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011)

    Article  Google Scholar 

  46. Park, K., Pai, V.S.: CoMon: a mostly-scalable monitoring system for PlanetLab. ACM SIGOPS Oper. Syst. Rev. 40(1), 65–74 (2006)

    Article  Google Scholar 

  47. Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud computing. Clust. Comput. 12(1), 10 (2008)

    Google Scholar 

  48. Fan, X., Weber, W.D., Barroso, L.A.: Power provisioning for a warehouse-sized computer. In: The 34th ACM International Symposium on Computer Architecture, 2007, New York, NY, USA, pp. 13–23 (2007)

  49. Garg, S., Toosi, A., Gopalaiyengar, S., Buyya, R.: SLA-based virtual machine management for heterogeneous workloads in a cloud datacenter. J. Netw. Comput. Appl. 45(C), 108–120 (2014)

    Article  Google Scholar 

  50. Barroso, L., Hölzle, U.: The case for energy-proportional computing. Computer 40(12), 33–37 (2007)

    Article  Google Scholar 

  51. Tsakalozos, K., Verroios, V., Roussopoulos, M., Delis, A.: Live VM migration under time-constraints in share-nothing IaaS-clouds. IEEE Trans. Parallel Distrib. Syst. 28(8), 2285–2298 (2017)

    Article  Google Scholar 

  52. Voorsluys, W., Broberg, J., Venugopal, S., Buyya, R.: Cost of virtual machine live migration in clouds: a performance evaluation. In: Proceedings of the 1st International Conference on Cloud Computing, 2009, Beijing, China, pp. 254–265 (2009)

  53. Nathuji, R., Schwan, K.: VirtualPower: coordinated power management in virtualized enterprise systems. ACM SIGOPS Oper. Syst. Rev. 40(6), 265–278 (2007)

    Article  Google Scholar 

  54. Homsi, S., Liu, S., Chaparro-Baquero, G.A., Bai, O., Ren, S., Quan, G.: Workload consolidation for cloud data centers with guaranteed QoS using request reneging. IEEE Trans. Parallel Distrib. Syst. 28(7), 2103–2116 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the FCT (Fundação para a Ciência e a Tecnologia, Portugal) through the project UIDB/50021/2020.

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Contributions

MR: Conceptualization, methodology, validation, formal analysis, investigation, data curation, writing the original draft. NS-G: Conceptualization, writing, review, and editing. RE-M: Conceptualization, methodology, review, and editing, supervision. LS: Conceptualization, methodology, review, and editing. AM: Conceptualization and supervision. All authors reviewed the manuscript.

Corresponding author

Correspondence to Reza Entezari-Maleki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This research is authors’ original work, and it has not received prior publication and is not under consideration for publication elsewhere.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezakhani, M., Sarrafzadeh-Ghadimi, N., Entezari-Maleki, R. et al. Energy-aware QoS-based dynamic virtual machine consolidation approach based on RL and ANN. Cluster Comput 27, 827–843 (2024). https://doi.org/10.1007/s10586-023-03983-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-023-03983-2

Keywords

Navigation