Skip to main content
Log in

DPC2-CD: a secure architecture and methods for distributed processing and concurrency control in cloud databases

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Multi-tenant public cloud architecture is plagued by numerous security issues in cloud computing, including host access restrictions, unlawful access, and data security. The National e-governance division is discouraged from launching numerous e-governance projects, including the Adhaar-digital locker, e-sign, financial-PayGov, Jan Dhan Yojna, E-participation-MyGov, and e-Sampark. Due to the limited computational capabilities in the private cloud, the performance of the applications will also be impacted. In these e-governance initiatives, a significant amount of user data will be produced that will be impossible to handle on the private cloud. To manage the user's data, a private, secure space with high-performance computing resources in a public cloud environment will be required. This article presents DPC2-CD, a secure architecture, and methods that (i) offer a secure private space in a public cloud environment, (ii) perform distributed processing and concurrency control of cloud databases, and (iii) guarantee the high performance of e-governance applications. The National e-Government Division will be able to successfully implement the numerous e-Government projects with the help of our proposed solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as only for the result analysis of simulated work, private data of the University has been used during the current study.

References

  1. Business still wary of the legal and security issues concerning cloud computing. Shown by Bobbie Johnson. (2012). http://gigaom.com/cloud/security-still-the-no-1-obstacle-to-cloud-adoption/. Accessed 20 June 2012

  2. Aliyu, A., Abdullah, A.H., Kaiwartya, O., Cao, Y., Usman, M.J., Kumar, S., Lobiyal, D.K., Raw, R.S.: Cloud computing in VANETs: architecture, taxonomy, and challenges. IETE Tech. Rev. (2017). https://doi.org/10.1080/02564602.2017.1342572

    Article  Google Scholar 

  3. Cayirci, E., et al.: A risk assessment model for selecting cloud service providers. J. Cloud Comput.: Adv. Syst. Appl. 5, 14 (2016). https://doi.org/10.1186/s13677-016-0064-x

    Article  Google Scholar 

  4. Maroc, S., Zhang, J.B.: Cloud services security-driven evaluation for multiple tenants. Clust. Comput. 24(2), 1103–1121 (2021). https://doi.org/10.1007/s10586-020-03178-z

    Article  Google Scholar 

  5. STAMFORD, Conn. (2010). http://www.gartner.com/it/page.jsp?id=1322414. Accessed 24 May 2012

  6. Razaque, A., Rizvi, S.S.: Privacy preserving model: a new scheme for auditing cloud stakeholders. J. Cloud Comput.: Adv. Syst. Appl. 6, 7 (2017). https://doi.org/10.1186/s13677-017-0076-1

    Article  Google Scholar 

  7. Yadav, A.K., Bharti, R.K., Raw, R.S.: Security solution to prevent data leakage over multitenant cloud infrastructure. Int. J. Pure Appl. Math. 118(7), 269–276 (2018)

    Google Scholar 

  8. Raw, R.S., Kumar, M., Singh, N.: Security issues and solutions in vehicular Ad hoc Network: a review approach." ICCSEA, SPPR, CSIA, WimoA, p. 339347. (2013). https://doi.org/10.5121/csit.2013.3535

  9. Mansouri, Y., Babar, M.A.: A review of edge computing: features and resource virtualization. J. Parallel Distrib. Comput. (2021). https://doi.org/10.1016/j.jpdc.2020.12.015

    Article  Google Scholar 

  10. Ankita, J., et al.: A proactive approach for resource provisioning in cloud computing. Int. J. Recent Technol. Eng. (IJRTE) 7, 435–444 (2019)

    Google Scholar 

  11. Hu, T., Zhang, Z., Yi, P., Liang, D., Li, Z., Ren, Q., Yuxiang, Hu., Lan, J.: SEAPP: a secure application management framework based on REST API access control in SDN-enabled cloud environment. J. Parallel Distrib. Comput. 147, 108–123 (2021). https://doi.org/10.1016/j.jpdc.2020.09.006

    Article  Google Scholar 

  12. Sudhakar, R.V., Malleswara Rao, T.C.: Security aware index based quasi–identifier approach for privacy preservation of data sets for cloud applications. Clust. Comput. (2020). https://doi.org/10.1007/s10586-019-03028-7

    Article  Google Scholar 

  13. http://www.digitalindia.gov.in/writereaddata/files/whats_new_doc/Presentation-UNDP-26.08.2015.v5.pdf. Accessed 11 Nov 2015

  14. Kumar, M., Yadav, A.K., Khatri, P., Raw, R.S.: Global host allocation policy for virtual machine in cloud computing. Int. J. Inf. Technol. 10(3), 279–287 (2018). https://doi.org/10.1007/s41870-018-0093-4

    Article  Google Scholar 

  15. Gaba, P., Raw, R.S.: Vehicular cloud and fog computing architecture, applications, services, and challenges. In: IoT and cloud computing advancements in vehicular ad-hoc networks, pp. 268–296. IGI Global, Hershey (2020). https://doi.org/10.4018/978-1-7998-2570-8.ch014

    Chapter  Google Scholar 

  16. Yadav, A.K., Bharti, R.K., Raw, R.S.: SA2-MCD: secured architecture for allocation of virtual machine in multitenant cloud databases. Big Data Res. 24, 100187 (2021). https://doi.org/10.1016/j.bdr.2021.100187

    Article  Google Scholar 

  17. Bhardwaj, T., Reyes, C., Upadhyay, H., Sharma, S.C., Lagos, L.: Cloudlet-enabled wireless body area networks (WBANs): a systematic review, architecture, and research directions for QoS improvement. Int. J. Syst. Assur. Eng. Manage. (2021). https://doi.org/10.1007/s13198-021-01508-x

    Article  Google Scholar 

  18. Singhal, R., Singhal, A.: A feedback-based combinatorial fair economical double auction resource allocation model for cloud computing. Future Gener. Comput. Syst. 115, 780–797 (2021). https://doi.org/10.1016/j.future.2020.09.022

    Article  Google Scholar 

  19. Yoshida, H.: LUN security considerations for storage area networks. Hitachi Data Systems. (2013). ftp://utcc.utoronto.ca/docs/9985V/Hitachi/Whitepapers/WP91%20San%20Lun%20Secur.pdf. Accessed 20 Feb 2018

  20. Tahir, M., Sardaraz, M., Mehmood, Z., Muhammad, S.: CryptoGA: a cryptosystem based on genetic algorithm for cloud data security. Clust. Comput. 24(2), 739–752 (2021). https://doi.org/10.1007/s10586-020-03157-4

    Article  Google Scholar 

  21. Bhardwaj, T., Sharma, S.C.: An autonomic resource provisioning framework for efficient data collection in cloudlet-enabled wireless body area networks: a fuzzy-based proactive approach. Soft Comput. 23(20), 10361–10383 (2019). https://doi.org/10.1007/s00500-018-3587-x

    Article  Google Scholar 

  22. Zhang, L., Zou, Y., Wang, W., Jin, Z., Yansen, Su., Chen, H.: Resource allocation and trust computing for block chain-enabled edge computing system. Comput. Secur. 105, 102249 (2021). https://doi.org/10.1016/j.cose.2021.102249

    Article  Google Scholar 

  23. VMware: VMware ESX server: using raw device mapping. (2015). https://www.vmware.com/pdf/esx25_rawdevicemapping.pdf. Accessed 26 Feb 2018

  24. Bhardwaj, T., Sharma, S.C.: Fuzzy logic-based elasticity controller for autonomic resource provisioning in parallel scientific applications: a cloud computing perspective. Comput. Electr. Eng. 70, 1049–1073 (2018). https://doi.org/10.1016/j.compeleceng.2018.02.050

    Article  Google Scholar 

  25. VMware: VMware ESX server 3.0.1: performance characteristics of VMFS and RDM. (2015) https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmfs_rdm_perf.pdf. Accessed 26 Feb 2018

  26. Bhardwaj, T., Sharma, S.C.: Cloud-WBAN: an experimental framework for cloud-enabled wireless body area network with efficient virtual resource utilization. Sustain. Comput.: Inform. Syst. 20, 14–33 (2018). https://doi.org/10.1016/j.suscom.2018.08.008

    Article  Google Scholar 

  27. Naha, R.K., Garg, S.: Multi-criteria–based dynamic user behaviour–aware resource allocation in fog computing. ACM Trans. Internet Things 2(1), 1–31 (2021). https://doi.org/10.1145/3423332

    Article  Google Scholar 

  28. VMware: VMware vsphere ESXi vcenter server 7.0 storage. E-Publishing Inc (2020)

  29. Singh, J., Singh, P., Gill, S.S.: Fog computing: a taxonomy, systematic review, current trends and research challenges. J. Parallel Distrib. Comput. 157, 56–85 (2021). https://doi.org/10.1016/j.jpdc.2021.06.005

    Article  Google Scholar 

  30. Bhardwaj, T., Upadhyay, H., Sharma, S.C.: An autonomic resource allocation framework for service-based cloud applications: a proactive approach.". In: Soft computing: theories and applications, pp. 1045–1058. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-4032-5_93

    Chapter  Google Scholar 

  31. VMware: VMware vsphereESXivcenter server 7.0 security. E-Publishing Inc (2020)

  32. Bhardwaj, T., Upadhyay, H., Sharma, S.C.: Autonomic resource allocation mechanism for service-based cloud applications. In: 2019 international conference on computing, communication, and intelligent systems (ICCCIS), pp. 183–187. IEEE. (2019). https://doi.org/10.1109/ICCCIS48478.2019.8974515

    Chapter  Google Scholar 

  33. Pandey, A., Calyam, P., Debroy, S., Wang, S., Alarcon, M.L.: VECTrust: trusted resource allocation in volunteer edge-cloud computing workflows. In: Proceedings of the 14th IEEE/ACM international conference on utility and cloud computing, pp. 1–10. (2021). https://doi.org/10.1145/3468737.3494099

  34. Ahmadian, M., Plochan, F., Roessler, Z., Marinescu, D.C.: SecureNoSQL: an approach for secure search of encrypted NoSQL databases in the public cloud. Int. J. Inf. Manage. 37(2), 63–74 (2017). https://doi.org/10.1016/j.ijinfomgt.2016.11.005

    Article  Google Scholar 

  35. Rafique, A., Van Landuyt, D., Beni, E.H., Lagaisse, B., Joosen, W.: CryptDICE: distributed data protection system for secure cloud data storage and computation. Inf. Syst. 96, 101671 (2021). https://doi.org/10.1016/j.is.2020.101671

    Article  Google Scholar 

  36. Hasan, M.K., Islam, S., Sulaiman, R., Khan, S., Hashim, A.H., Habib, S., Islam, M., et al.: Lightweight encryption technique to enhance medical image security on internet of medical things applications. IEEE Access 9, 47731–47742 (2021). https://doi.org/10.1109/ACCESS.2021.3061710

    Article  Google Scholar 

  37. Seth, B., Dalal, S., Jaglan, V., Le, D.N., Mohan, S., Srivastava, G.: Integrating encryption techniques for secure data storage in the cloud. Trans. Emerg. Telecommun. Technol. (2020). https://doi.org/10.1002/ett.4108

    Article  Google Scholar 

  38. Agnihotri, N., Sharma, A.K.: Comparative analysis of different symmetric encryption techniques based on computation time. In: 2020 sixth international conference on parallel, distributed and grid computing (PDGC), pp. 6–9. IEEE (2020). https://doi.org/10.1109/PDGC50313.2020.9315848

  39. Gupta, E., Sural, S., Vaidya, J., Atluri, V.: Attribute-based access control for NoSQL databases. In: Proceedings of the eleventh ACM conference on data and application security and privacy, pp. 317–319. (2021). https://doi.org/10.1145/3422337.3450323

  40. Fan, P., et al.: 2PC+: a high-performance protocol for distributed transactions of micro-service architecture. In: Intelligent mobile service computing, pp. 93–105. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-50184-6_6

    Chapter  Google Scholar 

  41. Verma, S., Yadav, A.K., Motwani, D., Raw, R.S. Singh, H.K.: An efficient data replication and load balancing technique for fog computing environment. In: 2016 3rd international conference on computing for sustainable global development (INDIACom), pp. 2888–2895. IEEE (2016). https://ieeexplore.ieee.org/abstract/document/7724792. Accessed 5 April 2016

  42. Bhardwaj, T., Upadhyay, H., Sharma, S.C.: Autonomic resource provisioning framework for service-based cloud applications: a queuing-model based approach. In: 2020 10th international conference on cloud computing, data science & engineering (confluence), pp. 605–610. IEEE (2020). https://doi.org/10.1109/Confluence47617.2020.9058266

  43. Calheiros, R.N., et al.: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software: Pract. Exp. 41(1), 23–50 (2011). https://doi.org/10.1002/spe.995

    Article  MathSciNet  Google Scholar 

  44. Bhardwaj, T., Sharma, S.C.: An efficient elasticity mechanism for server-based pervasive healthcare applications in cloud environment. In: 2017 IEEE 19th international conference on high performance computing and communications workshops (HPCCWS), pp. 66–69. IEEE (2017). https://doi.org/10.1109/HPCCWS.2017.00016

  45. Mampage, A., Karunasekera, S., Buyya, R.: A holistic view on resource management in serverless computing environments: taxonomy and future directions. ACM Comput. Surv. (CSUR) (2021). https://doi.org/10.1145/3510412

    Article  Google Scholar 

  46. Hussain, M., et al.: Energy and performance-efficient task scheduling in heterogeneous virtualized cloud computing. Sustain. Comput.: Inform. Syst. 30, 100517 (2021). https://doi.org/10.1016/j.suscom.2021.100517

    Article  Google Scholar 

  47. Kumari, A., Gupta, R., Tanwar, S., Kumar, N.: Blockchain and AI amalgamation for energy cloud management: challenges, solutions, and future directions. J. Parallel Distrib. Comput. 143, 148–166 (2020). https://doi.org/10.1016/j.jpdc.2020.05.004

    Article  Google Scholar 

  48. Zhang, N., et al.: A genetic algorithm-based task scheduling for cloud resource crowd-funding model. Int. J. Commun. Syst. 31(1), e3394 (2018). https://doi.org/10.1002/dac.3394

    Article  Google Scholar 

  49. Shen, Y., et al.: Adaptive task scheduling strategy in cloud: when energy consumption meets performance guarantee. World Wide Web 20(2), 155–173 (2017). https://doi.org/10.1007/s11280-016-0382-4

    Article  MathSciNet  Google Scholar 

  50. Fan, H., Golab, W.: Gossip-based visibility control for high-performance geo-distributed transactions. VLDB J. 30(1), 93–114 (2021). https://doi.org/10.1007/s00778-020-00626-5

    Article  Google Scholar 

  51. Zhang, I., et al.: Building consistent transactions with inconsistent replication. ACM Trans. Comput. Syst. (TOCS) 35(4), 1–37 (2018). https://doi.org/10.1145/3269981

    Article  Google Scholar 

Download references

Funding

No funding has been received from any organization to support the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Writing, creating the initial draught, and conceptualizing have been performed by AKY. RSR and RKB provided resources and supervised the work.

Corresponding author

Correspondence to Arun Kumar Yadav.

Ethics declarations

Conflict of interest

There are no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A.K., Raw, R.S. & Bharti, R.K. DPC2-CD: a secure architecture and methods for distributed processing and concurrency control in cloud databases. Cluster Comput 26, 2047–2068 (2023). https://doi.org/10.1007/s10586-022-03744-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-022-03744-7

Keywords

Navigation