Skip to main content
Log in

A novel design of a dependable and fault-tolerant multi-layer banyan network based on a crossbar switch for nano communication

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Circuits based on quantum technology process data significantly quicker than circuits based on standard transistor-based technologies. The polarization of electrons provides digital information in Quantum-Dot Cellular Automata (QCA) technology. Making effective electronic circuits is one of the applications of this QCA technology in the field of nano communications. A nanonetwork, also known as a nano-scale network, is a collection of interconnected nanomachines capable of computation, data storage, sensing, and actuation. They can be built in various ways, with different phases of switching components and connecting links. On the other hand, manufacturing flaws and variances continue to be a concern with QCA-based circuits. Designing a fault-tolerant circuit for a banyan network is one of the most appealing topics in QCA nanotechnology because the banyan network is one of the most common and multistage communication architecture operations that are needed in all computing systems. The banyan network can be highly beneficial and supportive in designing any switching circuit. In the present article, we provide a novel circuit design technique for fault-tolerant banyan network circuits utilizing QCA technology, which is a new method for implementing the nano communications circuit. Furthermore, we used QCADesigner-E software to check simulated findings for a suggested circuit with other researchers for results and analysis. The fault-tolerant banyan network circuit that has been proposed employs 516 QCA cells, an area of 0.38 µm2, and has a 1.5 clock cycle delay in achieving its goal. Furthermore, simulation outcomes show that the recommended banyan network circuit with a fault-tolerant can achieve a 70% fault tolerance against four faults: cell missing, cell displacement, extra cell, and cell rotation. These findings enrich the literature on digital transformation, fault-tolerant designs in nano-based technologies, and nano communication and provide implications for the transformation of nanonetworks and networks on the chip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors

References

  1. Suganthi, K., Malarvizhi, S.: Millimeter wave CMOS minimum noise amplifier for automotive radars in the frequency band (60–66 GHZ). Clust. Comput. 22(5), 11755–11764 (2019)

    Article  Google Scholar 

  2. Schaller, R.R.: Moore’s law: past, present and future. IEEE Spectr. 34(6), 52–59 (1997)

    Article  Google Scholar 

  3. Weste, N.H., Eshraghian, K.: Principles of CMOS VLSI design: a systems perspective. Addison-Wesley Longman Publishing Co., Inc, New York (1985)

    Google Scholar 

  4. Lent, C. S., Tougaw, P. D., Porod, W.: Quantum cellular automata: the physics of computing with arrays of quantum dot molecules. In: Proceedings Workshop on Physics and Computation. PhysComp'94, IEEE, pp. 5–13 (1994)

  5. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49 (1993)

    Article  Google Scholar 

  6. Farrelly, T.: A review of quantum cellular automata. Quantum 4, 368 (2020)

    Article  Google Scholar 

  7. Guedes, T., Jesus, L.A., Ocaña, K.A., Drummond, L., de Oliveira, D.: Provenance-based fault tolerance technique recommendation for cloud-based scientific workflows: a practical approach. Clust. Comput. 23(1), 123–148 (2020)

    Article  Google Scholar 

  8. Arrighi, P.: An overview of quantum cellular automata. Nat. Comput. 18(4), 885–899 (2019)

    Article  MathSciNet  Google Scholar 

  9. Roohi, A., DeMara, R.F., Khoshavi, N.: Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectron. J. 46(6), 531–542 (2015)

    Article  Google Scholar 

  10. Ahmadpour, S.-S., Mosleh, M., Heikalabad, S.R.: The design and implementation of a robust single-layer QCA ALU using a novel fault-tolerant three-input majority gate. J. Supercomput. 76(12), 10155–10185 (2020)

    Article  Google Scholar 

  11. Ahmadpour, S.S., Mosleh, M.: A novel ultra-dense and low-power structure for fault-tolerant three-input majority gate in QCA technology. Concurr. Comput. 32(5), e5548 (2020)

    Article  Google Scholar 

  12. Foroutan, S.A.H., Sabbaghi-Nadooshan, R., Mohammadi, M., Tavakoli, M.B.: Investigating multiple defects on a new fault-tolerant three-input QCA majority gate. J. Supercomput. 77(8), 8305–8325 (2021)

    Article  Google Scholar 

  13. Das, J.C., De, D.: Design of single layer banyan network using quantum-dot cellular automata for nanocommunication. Optik 172, 892–907 (2018)

    Article  Google Scholar 

  14. Skanda, C., Srivatsa, B., Premananda, B: Design of Compact and Energy Efficient Banyan Network for Nano Communication. In: 2021 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), IEEE, pp. 135–140 (2021)

  15. Majeed, A.H., Zainal, M.S., Alkaldy, E.: Quantum-dot cellular automata. Int. J. Integrat. Eng. 11(8), 143–158 (2019)

    Google Scholar 

  16. Akeela, R., Wagh, M.D.: A five-input majority gate in quantum-dot cellular automata. NSTI Nanotech 2, 978–981 (2011)

    Google Scholar 

  17. Babaie, S., Sadoghifar, A., Bahar, A.N.: Design of an efficient multi-layer arithmetic logic unit in quantum-dot cellular automata (QCA). IEEE Trans. Circuits Syst. II Express Briefs 66(6), 963–967 (2018)

    Google Scholar 

  18. Angizi, S., Sarmadi, S., Sayedsalehi, S., Navi, K.: Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron. J. 46(1), 43–51 (2015)

    Article  Google Scholar 

  19. Navi, K., Chabi, A.M., Sayedsalehi, S.: A novel seven input majority gate in quantum-dot cellular automata. Int. J. Comput. Sci. Issues (IJCSI) 9(1), 84 (2012)

    Google Scholar 

  20. Azghadi, M.R., Kavehie, O., Navi, K.: A novel design for quantum-dot cellular automata cells and full adders. arXiv preprintarXiv:1204.2048, (2012).

  21. Safoev, N., Jeon, J.-C.: A novel controllable inverter and adder/subtractor in quantum-dot cellular automata using cell interaction based XOR gate. Microelectron. Eng. 222, 111197 (2020)

    Article  Google Scholar 

  22. Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Devices 50(9), 1890–1896 (2003)

    Article  Google Scholar 

  23. Walus, K., Jullien, G., Dimitrov, V.: Computer arithmetic structures for quantum cellular automata. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2: IEEE, pp. 1435–1439 (2003)

  24. Das, J., Alam, S.M., Bhanja, S.: Low power magnetic quantum cellular automata realization using magnetic multi-layer structures. IEEE J. Emerging Select. Top. Circuits Syst. 1(3), 267–276 (2011)

    Article  Google Scholar 

  25. Tahoori, M.B., Momenzadeh, M., Huang, J., Lombardi, F.: Defects and faults in quantum cellular automata at nano scale. In 22nd IEEE VLSI Test Symposium, 2004. Proceedings., IEEE, pp. 291–296 (2004).

  26. Seyedi, S., Darbandi, M., Navimipour, N.J.: Designing an efficient fault tolerance D-latch based on quantum-dot cellular automata nanotechnology. Optik 185, 827–837 (2019)

    Article  Google Scholar 

  27. Farazkish, R.: A new quantum-dot cellular automata fault-tolerant full-adder. J. Comput. Electron. 14(2), 506–514 (2015)

    Article  Google Scholar 

  28. Farazkish, R.: A new quantum-dot cellular automata fault-tolerant five-input majority gate. J. Nanopart. Res. 16(2), 1–7 (2014)

    Article  Google Scholar 

  29. Farazkish, R., Khodaparast, F.: Design and characterization of a new fault-tolerant full-adder for quantum-dot cellular automata. Microprocess. Microsyst. 39(6), 426–433 (2015)

    Article  Google Scholar 

  30. Ahmadpour, S.-S., Mosleh, M.: A novel fault-tolerant multiplexer in quantum-dot cellular automata technology. J. Supercomput. 74(9), 4696–4716 (2018)

    Article  Google Scholar 

  31. Shukla, M.K., Ratan, R., Oruç, A.Y.: A quantum self-routing packet switch. Vectors 12, 13 (2004)

    Google Scholar 

  32. Das, J.C., De, D.: Quantum dot-cellular automata based cipher text design for nano-communication. In: 2012 International Conference on Radar, Communication and Computing (ICRCC), IEEE, pp. 224–229 (2012)

  33. Das, S., De, D.: Nanocommunication using QCA: a data path selector cum router for efficient channel utilization. In 2012 International conference on Radar, communication and computing (IcRcc), IEEE, pp. 43–47 (2012)

  34. Tehrani, M.A., Safaei, F., Moaiyeri, M.H., Navi, K.: Design and implementation of multistage interconnection networks using quantum-dot cellular automata. Microelectron. J. 42(6), 913–922 (2011)

    Article  Google Scholar 

  35. Silva, D.S., Sardinha, L.H., Vieira, M.A., Vieira, L.F., Neto, O.P.V.: Robust serial nanocommunication with QCA. IEEE Trans. Nanotechnol. 14(3), 464–472 (2015)

    Article  Google Scholar 

  36. Sardinha, L.H., Costa, A.M., Neto, O.P.V., Vieira, L.F., Vieira, M.A.: Nanorouter: a quantum-dot cellular automata design. IEEE J. Sel. Areas Commun. 31(12), 825–834 (2013)

    Article  Google Scholar 

  37. Seyedi, S., Navimipour, N.J.: An efficient structure for designing a nano-scale fault-tolerant 2: 1 multiplexer based on quantum-dot cellular automata. Optik 251, 168409 (2022)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu.

Ethics declarations

Conflict of interest

On request, the data employed to support the conclusions of this study may be obtained from the corresponding author. The authors have no conflicts of interest. The authors have no relevant financial or non-financial interests to disclose. The authors have no competing interests to declare relevant to this article's content.”

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Liu, J. A novel design of a dependable and fault-tolerant multi-layer banyan network based on a crossbar switch for nano communication. Cluster Comput 26, 1601–1609 (2023). https://doi.org/10.1007/s10586-022-03698-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-022-03698-w

Keywords

Navigation