Skip to main content
Log in

Task placement for crowd recognition in edge-cloud based urban intelligent video systems

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Recently, edge-cloud has attracted much attention by its promising prospect in terms of facilitating the benefits of edge and cloud together. It is promising for urban video systems that require efficient and effective processing for their intelligent monitoring drives on various ends, like sky drones and land cameras. For instance, to support crowd recognition for public safety, the tasks to crowd recognition need to be placed into all processing nodes in the video systems for processing effectively. This is a challenging problem to facilitate the edge-cloud orchestrated scenarios. However, the variability of tasks based on their complexities is not considered fully in existing strategies. In this regard, we model and analyse task placement for crowd recognition in edge-cloud intelligent video systems. Then, our strategies are proposed which are referred to Node-Graph based Task Placement (NGTP) and Cluster-Graph based Task Placement (CGTP). Specifically, with the help of data dependencies, NGTP utilises the greedy approach with node graphs in the centralised way for general scenarios. Comparatively, CGTP utilises data dependency and similarity for task placing in the decentralised way for emergency scenarios. The experiments demonstrate the superior and effectiveness performance in forming tasks cost and running time of our proposed approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its additional files).

References

  1. Mäkitalo, N., Ometov, A., Kannisto, J., Andreev, S., Koucheryavy, Y., Mikkonen, T.: Safe, secure executions at the network edge: coordinating cloud, edge, and fog computing. IEEE Softw. 35(1), 30–37 (2018). https://doi.org/10.1109/MS.2017.4541037

    Article  Google Scholar 

  2. Wu, D., Bao, R., Li, Z., Wang, H., Wang, R.: Edge-cloud collaboration enabled video service enhancement: A hybrid human-artificial intelligence scheme. arXiv:abs/2103.12516 (2021)

  3. Zafari, F., Leung, K., Towsley, D., Basu, P., Swami, A., Li, J.: Let’s share: a game-theoretic framework for resource sharing in mobile edge clouds. arXiv:abs/2001.00567 (2020)

  4. Hu, H., Shan, H., Wang, C., Sun, T., Zhen, X., Yang, K., Yu, L., Zhang, Z., Quek, T.Q.S.: Video surveillance on mobile edge networks—a reinforcement-learning-based approach. IEEE Internet Things J. 7(6), 4746–4760 (2020). https://doi.org/10.1109/JIOT.2020.2968941

    Article  Google Scholar 

  5. Bisagno, N., Xamin, A., De Natale, F., Conci, N., Rinner, B.: Dynamic camera reconfiguration with reinforcement learning and stochastic methods for crowd surveillance. Sensors 20(17), 4691 (2020). https://doi.org/10.3390/s20174691

    Article  Google Scholar 

  6. Jin, Y., Qian, Z., Yang, W.: Uav cluster-based video surveillance system optimization in heterogeneous communication of smart cities. IEEE Access 8, 55654–55664 (2020). https://doi.org/10.1109/ACCESS.2020.2981647

    Article  Google Scholar 

  7. Gao, J., Yuan, Y., Wang, Q.: Feature-aware adaptation and density alignment for crowd counting in video surveillance. (2020)

  8. Bansod, S.D., Nandedkar, A.V.: Crowd anomaly detection and localization using histogram of magnitude and momentum. Vis. Comput. 36(3), 609–620 (2020)

    Article  Google Scholar 

  9. Zhang, G., Lu, D., Liu, H.: Iot-based positive emotional contagion for crowd evacuation. IEEE Internet Things J. 8(2), 1057–1070 (2021). https://doi.org/10.1109/JIOT.2020.3009715

    Article  Google Scholar 

  10. Zhou, M., Dong, H., Wang, X., Hu, X., Ge, S.: Modeling and simulation of crowd evacuation with signs at subway platform: a case study of beijing subway stations. IEEE Trans. Intell. Transp. Syst. (2020). https://doi.org/10.1109/TITS.2020.3027542

    Article  Google Scholar 

  11. Nawaratne, R., Kahawala, S., Nguyen, S., De Silva, D.: A generative latent space approach for real-time road surveillance in smart cities. IEEE Trans. Ind. Inform. 17(7), 4872–4881 (2021). https://doi.org/10.1109/TII.2020.3037286

    Article  Google Scholar 

  12. Liu, C., Huynh, D.Q., Sun, Y., Reynolds, M., Atkinson, S.: A vision-based pipeline for vehicle counting, speed estimation, and classification. IEEE Trans. Intell. Transp. Syst. (2020). https://doi.org/10.1109/TITS.2020.3004066

    Article  Google Scholar 

  13. Chen, J., Xiu, S., Chen, X., Guo, H., Xie, X.: Flounder-net: an efficient cnn for crowd counting by aerial photography. Neurocomputing 420, 82–89 (2021). https://doi.org/10.1016/j.neucom.2020.09.001.

    Article  Google Scholar 

  14. Chen, J., Li, K., Deng, Q., Li, K., Yu, P.S.: Distributed deep learning model for intelligent video surveillance systems with edge computing. IEEE Trans. Ind. Inform. (2019). https://doi.org/10.1109/TII.2019.2909473

    Article  Google Scholar 

  15. Tian, Y., Lei, Y., Zhang, J., Wang, J.Z.: Padnet: pan-density crowd counting. IEEE Trans. Image Process. 29, 2714–2727 (2020). https://doi.org/10.1109/TIP.2019.2952083

    Article  Google Scholar 

  16. Kang, M., Yang, G., Yoo, Y., Yoo, C.: Tensorexpress: In-network communication scheduling for distributed deep learning. (2020). https://doi.org/10.1109/CLOUD49709.2020.00014

  17. Pudasaini, D., Abhari, A.: In: Scalable object detection, tracking and pattern recognition model using edge computing. Society for Computer Simulation International, San Diego, CA, USA (2020)

  18. Li, J., Xue, Y., Wang, W., Ouyang, G.: Cross-level parallel network for crowd counting. IEEE Trans. Ind. Inform. 16(1), 566–576 (2020). https://doi.org/10.1109/TII.2019.2935244

    Article  Google Scholar 

  19. Langer, M., He, Z., Rahayu, W., Xue, Y.: Distributed training of deep learning models: a taxonomic perspective. IEEE Trans. Parallel Distrib. Syst. 31(12), 2802–2818 (2020). https://doi.org/10.1109/TPDS.2020.3003307

    Article  Google Scholar 

  20. Xu, C., Zheng, G., Zhao, X.: Energy-minimization task offloading and resource allocation for mobile edge computing in noma heterogeneous networks. IEEE Trans. Veh. Technol. 69(12), 16001–16016 (2020). https://doi.org/10.1109/TVT.2020.3040645

    Article  Google Scholar 

  21. Chen, Y., Zhang, N., Zhang, Y., Chen, X., Wu, W., Shen, X.S.: Toffee: task offloading and frequency scaling for energy efficiency of mobile devices in mobile edge computing. IEEE Trans. Cloud Comput. (2019). https://doi.org/10.1109/TCC.2019.2923692

    Article  Google Scholar 

  22. Lai, P., He, Q., Grundy, J., Chen, F., Abdelrazek, M., Hosking, J.G., Yang, Y.: Cost-effective app user allocation in an edge computing environment. IEEE Trans. Cloud Comput. (2020). https://doi.org/10.1109/TCC.2020.3001570

    Article  Google Scholar 

  23. Lee, J., Ko, H., Kim, J., Pack, S.: Data: dependency-aware task allocation scheme in distributed edge clouds. IEEE Trans. Ind. Inform. 16(12), 7782–7790 (2020). https://doi.org/10.1109/TII.2020.2990674

    Article  Google Scholar 

  24. Zhang, C., Du, H.: Dmora: decentralized multi-sp online resource allocation scheme for mobile edge computing. IEEE Trans. Cloud Comput. (2020). https://doi.org/10.1109/TCC.2020.3044852

    Article  Google Scholar 

  25. Yi, S., Li, H., Wang, X.: Pedestrian behavior modeling from stationary crowds with applications to intelligent surveillance. IEEE Trans. Image Process. 25(9), 4354–4368 (2016). https://doi.org/10.1109/TIP.2016.2590322

    Article  MathSciNet  MATH  Google Scholar 

  26. Filonenko, A., Jo, K.H.: Unattended object identification for intelligent surveillance systems using sequence of dual background difference. IEEE Trans. Ind. Inform. 12(6), 2247–2255 (2016). https://doi.org/10.1109/TII.2016.2605582

    Article  Google Scholar 

  27. Mozaffari, M., Saad, W., Bennis, M., Debbah, M.: Mobile unmanned aerial vehicles (UAVS) for energy-efficient internet of things communications. IEEE Trans. Wirel. Commun. 16(11), 7574–7589 (2017). https://doi.org/10.1109/TWC.2017.2751045

    Article  Google Scholar 

  28. Sultani, W., Shah, M.: Human action recognition in drone videos using a few aerial training examples. arXiv e-prints arXiv:1910.10027 (2019)

  29. Wu, D., Arkhipov, D.I., Kim, M., Talcott, C.L., Regan, A.C., McCann, J.A., Venkatasubramanian, N.: Addsen: Adaptive data processing and dissemination for drone swarms in urban sensing. IEEE Trans. Comput. 66(2), 183–198 (2017). https://doi.org/10.1109/TC.2016.2584061

    Article  MathSciNet  MATH  Google Scholar 

  30. Rodrigues, T.G., Suto, K., Nishiyama, H., Kato, N.: Hybrid method for minimizing service delay in edge cloud computing through vm migration and transmission power control. IEEE Trans. Comput. 66(5), 810–819 (2017). https://doi.org/10.1109/TC.2016.2620469

    Article  MathSciNet  Google Scholar 

  31. Kim, J., Ullah, S., Kim, D.H.: Gpu-based embedded edge server configuration and offloading for a neural network service. J. Supercomput. (2021)

  32. Wang, F., Xu, J., Wang, X., Cui, S.: Joint offloading and computing optimization in wireless powered mobile-edge computing systems. IEEE Trans. Wirel. Commun. 17(3), 1784–1797 (2018). https://doi.org/10.1109/TWC.2017.2785305

    Article  Google Scholar 

  33. Du, M., Wang, Y., Ye, K., Xu, C.: Algorithmics of cost-driven computation offloading in the edge-cloud environment. IEEE Trans. Comput. 69(10), 1519–1532 (2020). https://doi.org/10.1109/TC.2020.2976996

    Article  MathSciNet  MATH  Google Scholar 

  34. Jeong, S., Simeone, O., Kang, J.: Mobile edge computing via a UAV-mounted cloudlet: optimization of bit allocation and path planning. IEEE Trans. Veh. Technol. 67(3), 2049–2063 (2018). https://doi.org/10.1109/TVT.2017.2706308

    Article  Google Scholar 

  35. Zhu, S., Gui, L., Zhao, D., Cheng, N., Zhang, Q., Lang, X.: Learning-based computation offloading approaches in UAVS-assisted edge computing. IEEE Trans. Veh. Technol. 70(1), 928–944 (2021). https://doi.org/10.1109/TVT.2020.3048938

    Article  Google Scholar 

  36. Kim, K., Cho, Y., Eo, J., Lee, C., Han, J.: System-wide time versus density tradeoff in real-time multicore fluid scheduling. IEEE Trans. Comput. 67(7), 1007–1022 (2018). https://doi.org/10.1109/TC.2018.2793919

    Article  MathSciNet  Google Scholar 

  37. Zhang, Y., Wei, Q., Chen, C., Xue, M., Yuan, X., Wang, C.: Dynamic scheduling with service curve for QoS guarantee of large-scale cloud storage. IEEE Trans. Comput. 67(4), 457–468 (2018). https://doi.org/10.1109/TC.2017.2773511

    Article  MathSciNet  MATH  Google Scholar 

  38. Garey, M., Johnson, D.: Computers and intractability: a guide to the theory of NP-completeness (1979)

  39. Ester, M., Kriegel, H., Sander, J., Xu, X.: In: Simoudis, E., Han, J., Fayyad, U.M. (eds.) A density-based algorithm for discovering clusters in large spatial databases with noise, pp. 226–231. AAAI Press, Portland (1996). http://www.aaai.org/Library/KDD/1996/kdd96-037.php

  40. DJI: Manifold-dji. https://www.dji.com/manifold. (2021)

  41. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. (2016). https://doi.org/10.1109/CVPR.2016.91

  42. Huang, S., Jiau, M., Lin, C.: A genetic-algorithm-based approach to solve carpool service problems in cloud computing. IEEE Trans. Intell. Transp. Syst. 16(1), 352–364 (2015). https://doi.org/10.1109/TITS.2014.2334597

    Article  Google Scholar 

  43. Teerapittayanon, S., McDanel, B., Kung, H.T.: Distributed deep neural networks over the cloud, the edge and end devices. (2017). https://doi.org/10.1109/ICDCS.2017.226

  44. Cheng, M., Sun, Q., Tu, C.: An adaptive computation framework of distributed deep learning models for internet-of-things applications. (2018). https://doi.org/10.1109/RTCSA.2018.00019

  45. Lyu, L., Bezdek, J.C., He, X., Jin, J.: Fog-embedded deep learning for the internet of things. IEEE Trans. Ind. Inform. 15(7), 4206–4215 (2019). https://doi.org/10.1109/TII.2019.2912465

    Article  Google Scholar 

  46. Li, E., Zeng, L., Zhou, Z., Chen, X.: Edge ai: on-demand accelerating deep neural network inference via edge computing. IEEE Trans. Wirel. Commun. 19(1), 447–457 (2020). https://doi.org/10.1109/TWC.2019.2946140

    Article  Google Scholar 

  47. Gacoin, V., Kolar, A., Ren, C., Guinvarc’h, R.: Distributing deep neural networks for maximising computing capabilities and power efficiency in swarm. (2019). https://doi.org/10.1109/ISCAS.2019.8702672

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61702155, 61972128), the Natural Science Foundation of Anhui Province, China (Grant No. 1808085MF176), and the Fundamental Research Funds for the Central Universities, China (PA2021KCPY0050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Xu, B., Liu, E. et al. Task placement for crowd recognition in edge-cloud based urban intelligent video systems. Cluster Comput 25, 249–262 (2022). https://doi.org/10.1007/s10586-021-03392-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-021-03392-3

Keywords

Navigation