Skip to main content

Middleware-based multi-agent development environment for building and testing distributed intelligent systems


The spread of the Internet of Things (IoT) is demanding new, powerful architectures for handling the huge amounts of data produced by the IoT devices. In many scenarios, many existing isolated solutions applied to IoT devices use a set of rules to detect, report and mitigate malware activities or threats. This paper describes a development environment that allows the programming and debugging of such rule-based multi-agent solutions. The solution consists of the integration of a rule engine into the agent, the use of a specialized, wrapping agent class with a graphical user interface for programming and testing purposes, and a mechanism for the incremental composition of behaviors. Finally, a set of examples and a comparative study were accomplished to test the suitability and validity of the approach. The JADE multi-agent middleware has been used for the practical implementation of the approach.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    Adhikaree, A., Makani, H., Yun, J., Qiao, W., Kim, T.: Internet of Things-enabled multiagent system for residential DC microgrids. In: IEEE International Conference on Electro Information Technology (2017).

  2. 2.

    Aguayo-Canela, F.J., Alaiz-Moretón, H., García-Rodríguez, I., Benavides-Cuellar, C., Benítez-Andrades, J.A., Novais, P.: A FIPA-Compliant Framework for Integrating Rule Engines into Software Agents for Supporting Communication and Collaboration in a Multiagent Platform. In: A. Rocha, H. Adeli, L.P. Reis, S. Costanzo (eds.) New Knowledge in Information Systems and Technologies. WorldCIST’19 2019. Advances in Intelligent Systems and Computing, vol. 931, pp. 124–133. Cham (2019)

  3. 3.

    Ai, Y., Peng, M., Zhang, K.: Edge computing technologies for Internet of Things: a primer. Digit. Commun. Netw. 4(2), 77–86 (2018).

    Article  Google Scholar 

  4. 4.

    Bassiliades, N.: Agents and knowledge interoperability in the semantic web era. In: Proceedings of the 2nd International Conference on Web Intelligence, Mining and Semantics - WIMS ’12 (June 2012), 1 (2012).

  5. 5.

    Bergenti, F., Caire, G., Monica, S., Poggi, A.: The first twenty years of agent-based software development with JADE. Auto. Agents Multi-Agent Syst. 34(2), 36 (2020).

    Article  Google Scholar 

  6. 6.

    Bădică, C., Ilie, S., Ivanović, M., Mitrović, D.: Role of agent middleware in teaching distributed network application development. Adv. Intell. Syst. Comput. 296, 267–276 (2014)

    Google Scholar 

  7. 7.

    Calegari, R., Ciatto, G., Mascardi, V., Omicini, A.: Logic-based technologies for multi-agent systems: a systematic literature review. Auton. Agents Multi-Agent Syst. 35, (2021).

  8. 8.

    Cardoso, H.L.: Integrating jade and jess. (2007). Accessed 5 Oct 2020

  9. 9.

    Coulter, R., Pan, L.: Intelligent agents defending for an IoT world: a review. Comput. Secur. 73(2018), 439–458 (2018).

    Article  Google Scholar 

  10. 10.

    Darabseh, A., Freris, N.M.: A software-defined architecture for control of IoT cyberphysical systems. Clust. Comput. 22(4), 1107–1122 (2019).

    Article  Google Scholar 

  11. 11.

    Elmisery, A.M., Rho, S., Aborizka, M.: A new computing environment for collective privacy protection from constrained healthcare devices to IoT cloud services. Clust. Comput. 22(1), 1611–1638 (2019).

    Article  Google Scholar 

  12. 12.

    Friedman-Hill, E.J., et al.: Jess: Java Expert System Software (2018)

  13. 13.

    Giarratano, J.C.: CLIPS 6.4 user’s guide (2014)

  14. 14.

    Hatzivasilis, G., Papadakis, N., Hatzakis, I., Ioannidis, S., Vardakis, G.: Artificial intelligence-driven composition and security validation of an internet of things ecosystem. Appl. Sc 10(14) (2020).

  15. 15.

    Marcon, E., Chaabane, S., Sallez, Y., Bonte, T., Trentesaux, D.: A multi-agent system based on reactive decision rules for solving the caregiver routing problem in home health care. Simul. Model. Pract. Theory 74, 134–151 (2017).

    Article  Google Scholar 

  16. 16.

    Munawar, S., Khalil Toor, S., Aslam, M., Aimeur, E.: Paca-its: A multi-agent system for intelligent virtual laboratory courses. Appl. Sci. 9(23), 5084. (2019).

  17. 17.

    Pico-Valencia, P., Holgado-Terriza, J.A.: Agentification of the internet of things: a systematic literature review. (2018).

  18. 18.

    Rahmani, A.M., Babaei, Z., Souri, A.: Event-driven IoT architecture for data analysis of reliable healthcare application using complex event processing. Clust. Comput (2020).

  19. 19.

    Rakib, A., Uddin, I.: An efficient rule-based distributed reasoning framework for resource-bounded systems. Mobile Netw. Appl. 24(1), 82–99 (2019).

    Article  Google Scholar 

  20. 20.

    Samy Pessé, N.H.: rools on boarding, online, gitbook (2021). URL Accessed 05 Mar 2021

  21. 21.

    Simone Tripodi, S.B.: Beanshell proposal. (2019). URL Accessed 05 Mar 2021

  22. 22.

    Suganuma, T., Oide, T., Kitagami, S., Sugawara, K., Shiratori, N.: Multiagent-based flexible edge computing architecture for iot. IEEE Netw. 32(1), 16–23 (2018).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to José Alberto Benítez-Andrades.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aguayo-Canela, F.J., Alaiz-Moretón, H., García-Ordás, M.T. et al. Middleware-based multi-agent development environment for building and testing distributed intelligent systems. Cluster Comput 24, 2313–2325 (2021).

Download citation


  • Rule-based agent
  • Multi-agent systems
  • Distributed intelligence
  • Development environment