Liu, H., Motoda, H.: Computational Methods of Feature Selection. Chapman and Hall/CRC Press, Boca Raton (2007)
Book
Google Scholar
Liu, H., Motoda, H.: Feature Selection for Knowledge Discovery and Data Mining, vol. 454. Springer, New York (2012)
MATH
Google Scholar
Abdullah, S., Shaker, K., Shaker, H.: Investigating a round robin strategy over multi algorithms in optimizing the quality of university course timetables. Int. J. Phys. Sci. 6(6), 1452–1462 (2011)
Google Scholar
Holland. Genetic Algorithm for Solving Optimization Problems (1975)
Abualigah, L.M., Khader, A.T., Al-Betar, M.A., Alomari, O.A.: Text feature selection with a robust weight scheme and dynamic dimension reduction to text document clustering. Expert Syst. Appl. 84, 24–36 (2017)
Article
Google Scholar
Abualigah, L., Alsalibi, B., Shehab, M., Alshinwan, M., Khasawneh, A.M., Alabool, H.: A parallel hybrid krill herd algorithm for feature selection. Int. J. Mach. Learn. Cybern. 1–24 (2020)
Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: Feature Selection for High-Dimensional Data. Springer , Cham (2015)
Book
Google Scholar
Nakamura, R.Y., Pereira, L.A., Costa, K.A., Rodrigues, D., Papa, J.P., Yang, X.S.: BBA: a binary bat algorithm for feature selection. In: 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), (pp. 291–297). IEEE (2012)
Choi, S.I., Oh, J., Choi, C.H., Kim, C.: Input variable selection for feature extraction in classification problems. Signal Process. 92(3), 636–648 (2012)
Article
Google Scholar
Fu, K.S., Min, P.J., Li, T.J.: Feature selection in pattern recognition. IEEE Trans. Syst. Sci. Cybern. 6(1), 33–39 (1970)
Article
Google Scholar
Abualigah, L., Gandomi, A.H., Elaziz, M.A., Hussien, A.G., Khasawneh, A.M., Alshinwan, M., Houssein, E.H.: Nature-inspired optimization algorithms for text document clustering—a comprehensive analysis. Algorithms 13(12), 345 (2020)
MathSciNet
Article
Google Scholar
Abualigah, L.: Multi-verse optimizer algorithm: a comprehensive survey of its results, variants, and applications. Neural Comput. Appl. 1–21 (2020)
Abualigah, L.: Group search optimizer: a nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications. Neural Comput. Appl. 1–24 (2020)
Yan, M.: Hybrid Bainary Coral Reefs Optimazation Algorithm with Samulated Annealing for Feature Selection in High Dimentional Bieomedical Datasets, pp. 102–111. Elsevier, Amsterdam (2018)
Google Scholar
Abualigah, L., Diabat, A., Mirjalili, S., AbdElaziz, M., Gandomi, A.H.: The arithmetic optimization algorithm. Comput. Methods Appl. Mech. Eng. 376, 113609 (2021)
MathSciNet
Article
Google Scholar
Kumar, V., Minz, S.: Feature selection: a literature review. Smart Comput. Rev. 4(3), 211–229 (2014). https://doi.org/10.6029/smartcr.2014.03.007
Article
Google Scholar
Kang, S.H., Kim, K.J.: A feature selection approach to find optimal feature subsets for the network intrusion detection system. Clust. Comput. 19(1), 325–333 (2016)
Article
Google Scholar
Manoj, R.J., Praveena, M.A., Vijayakumar, K.: An ACO–ANN based feature selection algorithm for big data. Clust. Comput. 22(2), 3953–3960 (2019)
Article
Google Scholar
Gokulnath, C.B., Shantharajah, S.P.: An optimized feature selection based on genetic approach and support vector machine for heart disease. Clust. Comput. 22(6), 14777–14787 (2019)
Article
Google Scholar
Khamees, A.A., Khalid, S.: Multi-objective Feature Selection: Hybrid of Salp Swarm and Simulated Annealing Approach, pp. 1–14. Springer, Switzerland (2018)
Google Scholar
Du, K.L., Swamy, M.N.S.: Search and Optimization by Metaheuristics, p. 434. Springer, New York City (2016)
Book
Google Scholar
Dhaenens, C., Jourdan, L.: Metaheuristics for Big Data. Wiley, New York (2016)
Book
Google Scholar
Diao, R., Shen, Q.: Nature inspired feature selection meta-heuristics. Artif. Intell. Rev. 44(3), 311–340 (2015)
Article
Google Scholar
Mallenahalli, S.: A Tunable particle swarm size optimization algorithm for feature selection. In: 2018 IEEE Congress on Evolutionary Computation. IEEE (2018)
Diao, R., Shen, Q.: Feature selection with harmony search. IEEE Trans. Syst. Man Cybern. Part B 42(6), 1509–1523 (2012)
Article
Google Scholar
Peng, Y.T., Hu, S.: An improved feature selection algorithm based on ant colony optimization. IEEE Access. 6, 69203–69209 (2018)
Article
Google Scholar
Yan, M., Luo, W.: A hybrid algorithm based on binary chemical reaction optimization and tabu search for feature selection of high-dimensional biomedical data. Tsinghua Sci. Technol. 23(6), 733–743 (2018)
Article
Google Scholar
Sayed, G.I., Khoriba, G.: A Novel Chaotic Salp Swarm Algorithm for Global Optimization and Feature Selection. Springer, New York (2018)
Book
Google Scholar
Sahu, B., Debahut, M.: A novel feature selection algorithm using particle swarm optimization for cancer microarray data. Procedia Eng. 38, 27–31 (2012)
Article
Google Scholar
Abualigah, L.M.Q.: Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering. Studies in Computational Intelligence. Springer, Berlin (2019)
Book
Google Scholar
Abualigah, L.M., Khader, A.T., Hanandeh, E.S.: A new feature selection method to improve the document clustering using particle swarm optimization algorithm. J. Comput. Sci. 25, 456–466 (2018)
Article
Google Scholar
Chen, H., Hou, Y., Luo, Q., Hu, Z., Yan, L.: Text feature selection based on water wave optimization algorithm. In: International Conference on Advanced Computational Intelligence (ICACI). IEEE, pp. 546 551 (2018)
Padhy, N., Mishra, D., Panigrahi, R.: The survey of data mining applications and feature scope. arXiv preprint (2012).
Han, X.C., Quan, Y.X., Li, J., Zhang, L.: Feature subset selection by gravitational search algorithm optimization. Inf. Sci. 281, 128–146 (2014)
MathSciNet
Article
Google Scholar
Zanaty, E.A., Ghiduk, A.S.: A novel approach based on genetic algorithms and region growing for magnetic resonance image (MRI) segmentation. Comput. Sci. Inf. Syst. 10(3), 1319–1342 (2013)
Article
Google Scholar
Mirjalili, S.: ALO: Antlion Optimization for solving feature selection problems. Adv. Eng. Softw. 83, 80–98 (2015)
Article
Google Scholar
Linoff, G.S., Berry, M.J.: Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management. Wiley, New York (2011)
Google Scholar
Zhang, Z., Ning, Y.: Effective semi-supervised nonlinear dimensionality reduction for wood defects recognition. Comput. Sci. Inf. Syst. 7(1), 127–138 (2010)
Article
Google Scholar
Wan, M.W., Ye, L.: A feature selection method based on modified binary coded ant colony optimization algorithm. Appl. Soft Comput. 49, 248–258 (2016)
Article
Google Scholar
Zhao, Z.A., Liu, H.: Spectral Feature Selection for Data Mining. CRC Press, Boca raon (2011)
Book
Google Scholar
Chen, W.J., Li, L.: A heuristic feature selection approach for text categorization by using chaos optimization and genetic algorithm. In: Hindawi Publishing Corporation, Mathematical Problems in Engineering, pp. 1–6, (2013)
Ghamisi, P., Jon, A.B.: Feature selection based on hybridization of genetic algorithm and particle swarm optimization. IEEE Geosci. Remote Sens. Lett. 12(2), 309–313 (2014)
Article
Google Scholar
Oh, I.S., Lee, J.S., Moon, B.R.: Hybrid genetic algorithms for feature selection. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1424–1437 (2004)
Article
Google Scholar
Atyabi, A., Luerssen, M., Fitzgibbon, S., Powers, D.M.: Evolutionary feature selection and electrode reduction for EEG classification. In: IEEE Congress on Evolutionary Computation (CEC), (pp. 1–8). IEEE (2012)
Vasant, P.: Hybrid simulated annealing and genetic algorithms for industrial production management problems. Int. J. Comput. Methods 7(02), 279–297 (2010)
Article
Google Scholar
Wu, J., Lu, Z., Jin, L.: A novel hybrid genetic algorithm and simulated annealing for feature selection and kernel optimization in support vector regression. In: 2012 IEEE 13th International Conference on Information Reuse and Integration (IRI), (pp. 401–406). IEEE (2012)
Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016)
Article
Google Scholar
Emary, E., Zawbaa, H.M., AboulElla, H.: Binary Gray Wolf optimization approaches for feature selection. Neuro computing 2312(15), 1–33 (2015)
Google Scholar
Abualigah, L.M., Khader, A.T.: Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering. J Supercomput. 73(11), 4773–4795 (2017)
Article
Google Scholar