Skip to main content

Advertisement

Log in

A hybrid multi-objective metaheuristic optimization algorithm for scientific workflow scheduling

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Workflow is composed of some interdependent tasks and workflow scheduling in the cloud environment that refers to sorting the workflow tasks on virtual machines on the cloud platform. We will encounter many sorting modes with an increase in virtual machines and the variety in task size. Reaching an order with the least makespan is an NP-hard problem. The hardness of this problem increases even more with several contradictory goals. Hence, a meta-heuristic algorithm is what required in reaching the optimal response. Thus, the algorithm is a hybridization of the ant lion optimizer (ALO) algorithm with a Sine Cosine Algorithm (SCA) algorithm and used it multi-objectively to solve the problem of scheduling scientific workflows. The novelty of the proposed algorithm was to enhance search performance by making algorithms greedy and using random numbers according to Chaos Theory on the green cloud computing environment. The purpose was to minimize the makespan and cost of performing tasks, to reduce energy consumption to have a green cloud environment, and to increase throughput. WorkflowSim simulator was used for implementation, and the results were compared with the SPEA2 workflow scheduling algorithm. The results show a decrease in the energy consumed and makespan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zhang, H., Cao, X., Ho, J.K., Chow, T.W.: Object-level video advertising: an optimization framework. IEEE Trans. Ind. Inf. 13(2), 520–531 (2016)

    Google Scholar 

  2. Masdari, M., Jalali, M.: A survey and taxonomy of DoS attacks in cloud computing. Security Commun. Netw. 9(16), 3724–3751 (2016)

    Google Scholar 

  3. Panda, S.K., Jana, P.K.: An energy-efficient task scheduling algorithm for heterogeneous cloud computing systems. Clust. Comput. 22(2), 509–527 (2019)

    Google Scholar 

  4. Elsherbiny, S., Eldaydamony, E., Alrahmawy, M., Reyad, A.E.: An extended Intelligent Water Drops algorithm for workflow scheduling in cloud computing environment. Egypt. Inf. J. 19(1), 33–55 (2018)

    Google Scholar 

  5. Khalili, A., Babamir, S.M.: Optimal scheduling workflows in cloud computing environment using Pareto-based grey wolf optimizer. Concurr. Comput. Pract. Experience 29(11), e4044 (2017)

    Google Scholar 

  6. Khalili, A., Babamir, S.M.: A Pareto-based optimizer for workflow scheduling in cloud computing environmeNT. Int. J. Inf. Commun. Technol. Res. 8(1), 51–59 (2016)

    Google Scholar 

  7. Verma, A., Kaushal, S.: A hybrid multi-objective Particle Swarm Optimization for scientific workflow scheduling. Parallel Comput. 62, 1–19 (2017)

    MathSciNet  Google Scholar 

  8. Thaman, J., Singh, M.: Green cloud environment by using robust planning algorithm. Egypt. Inf. J. 18(3), 205–214 (2017)

    Google Scholar 

  9. Masdari, M., Nabavi, S.S., Ahmadi, V.: An overview of virtual machine placement schemes in cloud computing. J. Netw. Comput. Appl. 66, 106–127 (2016)

    Google Scholar 

  10. Geng, X., Mao, Y., Xiong, M., Liu, Y.: An improved task scheduling algorithm for scientific workflow in cloud computing environment. Clust. Comput. 22(3), 7539–7548 (2019)

    Google Scholar 

  11. Biswas, T., Kuila, P., Ray, A.K.: A novel workflow scheduling with multi-criteria using particle swarm optimization for heterogeneous computing systems. Clust. Comput. 23, 3255–3271 (2020)

    Google Scholar 

  12. Liu, K., Jin, H., Chen, J., Liu, X., Yuan, D., Yang, Y.: A compromised-time-cost scheduling algorithm in swindew-c for instance-intensive cost-constrained workflows on a cloud computing platform. Int. J. High Perform. Comput. Appl. 24(4), 445–456 (2010)

    Google Scholar 

  13. Ritchie, G., Levine, J.: A fast, effective local search for scheduling independent jobs in heterogeneous computing environments. Technical Report. Centre for Intelligent Systems and their Applications, University of Edinburgh (2003)

  14. Attiya, G., Hamam, Y.: Task allocation for maximizing reliability of distributed systems: A simulated annealing approach. J. Parallel Distrib. Comput. 66(10), 1259–1266 (2006)

    MATH  Google Scholar 

  15. Grosan, C., Abraham, A., Helvik, B.: Multiobjective evolutionary algorithms for scheduling jobs on computational grids. In: International Conference on Applied Computing, pp. 459–463 (2007)

  16. Masdari, M., Salehi, F., Jalali, M., Bidaki, M.: A survey of PSO-based scheduling algorithms in cloud computing. J. Netw. Syst. Manage. 25(1), 122–158 (2017)

    Google Scholar 

  17. Falzon, G., Li, M.: Enhancing genetic algorithms for dependent job scheduling in grid computing environments. J. Supercomput. 62(1), 290–314 (2012)

    Google Scholar 

  18. Gharehchopogh, F.S., Ahadi, M., Maleki, I., Habibpour, R., Kamalinia, A.: Analysis of scheduling algorithms in grid computing environment. Int. J. Innov. Appl. Stud. 4(3), 560–567 (2013)

    Google Scholar 

  19. Topcuoglu, H., Hariri, S., Wu, M.-Y.: Task scheduling algorithms for heterogeneous processors. In: Proceedings of Eighth Heterogeneous Computing Workshop (HCW'99), pp. 3–14. IEEE, Cancun (1999)

  20. Wei, W., GuoSun, Z.: Trusted dynamic level scheduling based on Bayes trust model. Sci. China Ser. F Inf. Sci. 50(3), 456–469 (2007)

    MATH  Google Scholar 

  21. Abdelkader, D.M., Omara, F.: Dynamic task scheduling algorithm with load balancing for heterogeneous computing system. Egypt. Inf. J. 13(2), 135–145 (2012)

    Google Scholar 

  22. Chen, W., Deelman, E.: Workflowsim: a toolkit for simulating scientific workflows in distributed environments. In: 2012 IEEE 8th International Conference on E-Science 2012, pp. 1–8. IEEE (2012)

  23. Rahman, M., Venugopal, S., Buyya, R.: A dynamic critical path algorithm for scheduling scientific workflow applications on global grids. In: Third IEEE International Conference on e-Science and Grid Computing (e-Science 2007), pp. 35–42. IEEE (2007)

  24. Khajemohammadi, H., Fanian, A., Gulliver, T.A.: Efficient workflow scheduling for grid computing using a leveled multi-objective genetic algorithm. J. Grid Comput. 12(4), 637–663 (2014)

    Google Scholar 

  25. Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011)

    Google Scholar 

  26. Biswas, T., Kuila, P., Ray, A.K., Sarkar, M.: Gravitational search algorithm based novel workflow scheduling for heterogeneous computing systems. Simul. Model. Pract. Theory 96, 101932 (2019)

    Google Scholar 

  27. Safari, M., Khorsand, R.: Energy-aware scheduling algorithm for time-constrained workflow tasks in DVFS-enabled cloud environment. Simul. Model. Pract. Theory 87, 311–326 (2018)

    Google Scholar 

  28. Fard, H.M., Prodan, R., Barrionuevo, J.J.D., Fahringer, T.: A multi-objective approach for workflow scheduling in heterogeneous environments. In: 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), pp. 300–309. IEEE (2012)

  29. Doğan, A., Özgüner, F.: Biobjective scheduling algorithms for execution time–reliability trade-off in heterogeneous computing systems. Comput. J. 48(3), 300–314 (2005)

    Google Scholar 

  30. Durillo, J.J., Prodan, R.: Multi-objective workflow scheduling in Amazon EC2. Clust. Comput. 17(2), 169–189 (2014)

    Google Scholar 

  31. Durillo, J.J., Prodan, R., Barbosa, J.G.: Pareto tradeoff scheduling of workflows on federated commercial clouds. Simul. Model. Pract. Theory 58, 95–111 (2015)

    Google Scholar 

  32. Mateos, C., Pacini, E., Garino, C.G.: An ACO-inspired algorithm for minimizing weighted flowtime in cloud-based parameter sweep experiments. Adv. Eng. Softw. 56, 38–50 (2013)

    Google Scholar 

  33. Selvarani, S., Sadhasivam, G.S.: Improved cost-based algorithm for task scheduling in cloud computing. In: 2010 IEEE International Conference on Computational Intelligence and Computing Research, pp. 1–5. IEEE (2010)

  34. Mezmaz, M., Melab, N., Kessaci, Y., Lee, Y.C., Talbi, E.-G., Zomaya, A.Y., Tuyttens, D.: A parallel bi-objective hybrid metaheuristic for energy-aware scheduling for cloud computing systems. J. Parallel Distrib. Comput. 71(11), 1497–1508 (2011)

    Google Scholar 

  35. Li, J., Su, S., Cheng, X., Huang, Q., Zhang, Z.: Cost-conscious scheduling for large graph processing in the cloud. In: 2011 IEEE International Conference on High Performance Computing And Communications, pp. 808–813. IEEE (2011)

  36. Dongarra, J.J., Jeannot, E., Saule, E., Shi, Z.: Bi-objective scheduling algorithms for optimizing makespan and reliability on heterogeneous systems. In: Proceedings of the nineteenth annual ACM symposium on Parallel algorithms and architectures 2007, pp. 280–288. ACM

  37. Sih, G.C., Lee, E.A.: A compile-time scheduling heuristic for interconnection-constrained heterogeneous processor architectures. IEEE Trans. Parallel Distrib. Syst. 4(2), 175–187 (1993)

    Google Scholar 

  38. Abazari, F., Analoui, M., Takabi, H., Fu, S.: MOWS: Multi-objective workflow scheduling in cloud computing based on heuristic algorithm. Simul. Model. Pract. Theory 93, 119–132 (2019)

    Google Scholar 

  39. Casas, I., Taheri, J., Ranjan, R., Wang, L., Zomaya, A.Y.: GA-ETI: An enhanced genetic algorithm for the scheduling of scientific workflows in cloud environments. Journal of computational science 26, 318–331 (2018)

    Google Scholar 

  40. Yu, J., Kirley, M., Buyya, R.: Multi-objective planning for workflow execution on grids. In: Proceedings of the 8th IEEE/ACM International Conference on Grid Computing, pp. 10–17. IEEE Computer Society (2007)

  41. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm. TIK-Report 103 (2001)

  42. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Google Scholar 

  43. Knowles, J., Corne, D.: The pareto archived evolution strategy: a new baseline algorithm for pareto multiobjective optimisation. In: Congress on Evolutionary Computation (CEC99), pp. 98–105 (1999)

  44. Gadhvi, B., Savsani, V., Patel, V.: Multi-objective optimization of vehicle passive suspension system using NSGA-II, SPEA2 and PESA-II. Procedia Technol. 23(2016), 361–368 (2016)

    Google Scholar 

  45. Zhao, F., Lei, W., Ma, W., Liu, Y., Zhang, C.: An improved SPEA2 algorithm with adaptive selection of evolutionary operators scheme for multiobjective optimization problems. Math. Probl. Eng. 2016, 8010346 (2016)

    MathSciNet  MATH  Google Scholar 

  46. Lezcano, C., Noguera, J.L.V., Pinto-Roa, D.P., García-Torres, M., Gaona, C., Gardel-Sotomayor, P.E.: A multi-objective approach for designing optimized operation sequence on binary image processing. Heliyon 6(4), e03670 (2020)

    Google Scholar 

  47. Xu, Y., Li, K., Hu, J., Li, K.: A genetic algorithm for task scheduling on heterogeneous computing systems using multiple priority queues. Inf. Sci. 270, 255–287 (2014)

    MathSciNet  MATH  Google Scholar 

  48. Schwiegelshohn, U.: Job Scheduling Strategies for Parallel Processing. Springer, Berlin (2010)

    Google Scholar 

  49. Mirjalili, S.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015)

    Google Scholar 

  50. Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl. Based Syst. 96, 120–133 (2016)

    Google Scholar 

  51. Tian, T., Liu, C., Guo, Q., Yuan, Y., Li, W., Yan, Q.: An improved ant lion optimization algorithm and its application in hydraulic turbine governing system parameter identification. Energies 11(1), 95 (2018)

    Google Scholar 

  52. Wang, M., Heidari, A.A., Chen, M., Chen, H., Zhao, X., Cai, X.: Exploratory Differential Ant Lion-based Optimization. Expert Syst. Appl. (2020). https://doi.org/10.1016/j.eswa.2020.113548

    Article  Google Scholar 

  53. Wang, M., Wu, C., Wang, L., Xiang, D., Huang, X.: A feature selection approach for hyperspectral image based on modified ant lion optimizer. Knowl. Based Syst. 168, 39–48 (2019)

    Google Scholar 

  54. Guo, W.-Y., Wang, Y., Dai, F., Xu, P.: Improved sine cosine algorithm combined with optimal neighborhood and quadratic interpolation strategy. Eng. Appl. Artif. Intell. 94, 103779 (2020)

    Google Scholar 

  55. Gupta, S., Deep, K., Engelbrecht, A.P.: A memory guided sine cosine algorithm for global optimization. Eng. Appl. Artif. Intell. 93, 103718 (2020)

    Google Scholar 

  56. Fan, Y., Wang, P., Heidari, A.A., Wang, M., Zhao, X., Chen, H., Li, C.: Rationalized fruit fly optimization with sine cosine algorithm: a comprehensive analysis. Expert Syst. Appl. 157, 113486 (2020)

    Google Scholar 

  57. Gupta, S., Deep, K., Mirjalili, S., Kim, J.H.: A modified sine cosine algorithm with novel transition parameter and mutation operator for global optimization. Expert Syst. Appl. 154, 113395 (2020)

    Google Scholar 

  58. Masdari, M., ValiKardan, S., Shahi, Z., Azar, S.I.: Towards workflow scheduling in cloud computing: a comprehensive analysis. J. Netw. Comput. Appl. 66, 64–82 (2016)

    Google Scholar 

  59. Muhammad-Bello, B.L., Aritsugi, M.: A robust algorithm for deadline constrained scheduling in IaaS cloud environment. IEICE Trans. Inf. Syst. 101(12), 2942–2957 (2018)

    Google Scholar 

  60. Marouf, I.: Task Scheduling Optimization in Cloud Computing Using Multi-Objective Evolutionary Algorithms With User-in-the-Loop. Birzeit University, Palestine (2019)

    Google Scholar 

  61. Fohler, G.: How different are offline and online scheduling? Gerhard Fohler, RTSOPS (2011)

  62. Singh, N., Singh, S.: A novel hybrid GWO-SCA approach for optimization problems. Eng. Sci. Technol. 20(6), 1586–1601 (2017)

    Google Scholar 

  63. Cerrone, C., Cerulli, R., Golden, B.: Carousel greedy: a generalized greedy algorithm with applications in optimization. Comput. Oper. Res. 85, 97–112 (2017)

    MathSciNet  MATH  Google Scholar 

  64. Kohli, M., Arora, S.: Chaotic grey wolf optimization algorithm for constrained optimization problems. J. Comput. Des. Eng. 5(4), 458–472 (2018)

    Google Scholar 

  65. Mukherjee, A., Mukherjee, V.: Chaotic krill herd algorithm for optimal reactive power dispatch considering FACTS devices. Appl. Soft Comput. 44, 163–190 (2016)

    Google Scholar 

  66. Saremi, S., Mirjalili, S., Lewis, A.: Biogeography-based optimisation with chaos. Neural Comput. Appl. 25(5), 1077–1097 (2014)

    Google Scholar 

  67. Sayed, G.I., Tharwat, A., Hassanien, A.E.: Chaotic dragonfly algorithm: an improved metaheuristic algorithm for feature selection. Appl. Intell. 49(1), 188–205 (2019)

    Google Scholar 

  68. Xavier, V.A., Annadurai, S.: Chaotic social spider algorithm for load balance aware task scheduling in cloud computing. Clust. Comput. 22(1), 287–297 (2019)

    Google Scholar 

  69. Mirjalili, S., Lewis, A.: S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm Evol. Comput. 9, 1–14 (2013)

    Google Scholar 

  70. Mahmoudi, M., Gharehchopogh, F.S.: An improvement of shuffled frog leaping algorithm with a decision tree for feature selection in text document classification. CSI J. Comput. Eng. 16(1), 60–72 (2018)

    Google Scholar 

  71. Yu, C., Cai, Z., Ye, X., Wang, M., Zhao, X., Liang, G., Chen, H., Li, C.: Quantum-like mutation-induced dragonfly-inspired optimization approach. Math. Comput. Simul. 178, 259–289 (2020)

    MathSciNet  MATH  Google Scholar 

  72. Hammouri, A.I., Mafarja, M., Al-Betar, M.A., Awadallah, M.A., Abu-Doush, I.: An improved Dragonfly Algorithm for feature selection. Knowl. Based Syst. 203, 106131 (2020)

    Google Scholar 

  73. Onaka, J.H.D., de Lima, Á.S., da Silva Kataoka, V., Bezerra, U.H., de Lima Tostes, M.E., Vieira, J.P.A., Carvalho, C.M.: Comparing NSGA-II and SPEA2 metaheuristics in solving the problem of optimal capacitor banks placement and sizing in distribution grids considering harmonic distortion restrictions. In: 2016 17th International Conference on Harmonics and Quality of Power (ICHQP), pp. 77–82. IEEE (2016)

  74. Liu, J., Pacitti, E., Valduriez, P., Mattoso, M.: A survey of data-intensive scientific workflow management. J. Grid Comput. 13(4), 457–493 (2015)

    Google Scholar 

  75. Naghibzadeh, M.: Modeling and scheduling hybrid workflows of tasks and task interaction graphs on the cloud. Fut. Gen. Comput. Syst. 65, 33–45 (2016)

    Google Scholar 

  76. Bharathi, S., Chervenak, A., Deelman, E., Mehta, G., Su, M.-H., Vahi, K.: Characterization of scientific workflows. In: 2008 Third Workshop on Workflows in Support of Large-Scale Science, pp. 1–10. IEEE (2008)

  77. Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S., Maechling, P.J., Mayani, R., Chen, W., Da Silva, R.F., Livny, M.: Pegasus, a workflow management system for science automation. Fut. Gen. Comput. Syst. 46, 17–35 (2015)

    Google Scholar 

  78. Zhou, A., Wang, S., Sun, Q., Li, J., Zhao, Q., Yang, F.: Support for spot virtual machine purchasing simulation. Clust. Comput. 21(1), 1–13 (2018)

    Google Scholar 

  79. Tong, Z., Chen, H., Deng, X., Li, K., Li, K.: A scheduling scheme in the cloud computing environment using deep Q-learning. Inf. Sci. 512, 1170–1191 (2020)

    Google Scholar 

  80. Yu, D., Ying, Y., Zhang, L., Liu, C., Sun, X., Zheng, H.: Balanced scheduling of distributed workflow tasks based on clustering. Knowl. Based Syst. 199, 105930 (2020)

    Google Scholar 

  81. Tong, Z., Chen, H., Deng, X., Li, K., Li, K.: A novel task scheduling scheme in a cloud computing environment using hybrid biogeography-based optimization. Soft. Comput. 23(21), 11035–11054 (2019)

    Google Scholar 

  82. Aziza, H., Krichen, S.: A hybrid genetic algorithm for scientific workflow scheduling in cloud environment. Neural Comput. Appl. 32, 15263–15278 (2020)

    Google Scholar 

  83. Durillo, J.J., Nebro, A.J.: jMetal: A Java framework for multi-objective optimization. Adv. Eng. Softw. 42(10), 760–771 (2011)

    Google Scholar 

  84. Anwar, N., Deng, H.: A hybrid metaheuristic for multi-objective scientific workflow scheduling in a cloud environment. Appl. Sci. 8(4), 538 (2018)

    Google Scholar 

  85. Lu, P., Zhang, G., Zhu, Z., Zhou, X., Sun, J., Zhou, J.: A review of cost and makespan-aware workflow scheduling in clouds. J. Circuits Syst. Comput. 28(06), 1930006 (2019)

    Google Scholar 

  86. Masdari, M., Zangakani, M.: Green cloud computing using proactive virtual machine placement: challenges and issues. J. Grid Comput. (2019). https://doi.org/10.1007/s10723-019-09489-9

    Article  Google Scholar 

  87. Jiang, J., Lin, Y., Xie, G., Fu, L., Yang, J.: Time and energy optimization algorithms for the static scheduling of multiple workflows in heterogeneous computing system. J. Grid Comput. 15(4), 435–456 (2017)

    Google Scholar 

  88. Singh, V., Gupta, I., Jana, P.K.: An energy efficient algorithm for workflow scheduling in IaaS cloud. J. Grid Comput. 18, 357–376 (2019)

    Google Scholar 

  89. Okabe, T., Jin, Y., Sendhoff, B.: A critical survey of performance indices for multi-objective optimisation. In: The 2003 Congress on Evolutionary Computation, 2003 (CEC'03), pp. 878–885. IEEE (2003)

  90. Mou, J., Gao, L., Li, X., Pan, Q., Mu, J.: Multi-objective inverse scheduling optimization of single-machine shop system with uncertain due-dates and processing times. Clust. Comput. 20(1), 371–390 (2017)

    Google Scholar 

  91. Khatib, M.S., Atique, M.: FGSA for optimal quality of service based transaction in real-time database systems under different workload condition. Clust. Comput. 23(1), 307–319 (2020)

    Google Scholar 

  92. Priya, V., Umamaheswari, K.: Enhanced continuous and discrete multi objective particle swarm optimization for text summarization. Clust. Comput. 22(1), 229–240 (2019)

    Google Scholar 

  93. Mirjalili, S., Jangir, P., Mirjalili, S.Z., Saremi, S., Trivedi, I.N.: Optimization of problems with multiple objectives using the multi-verse optimization algorithm. Knowl. Based Syst. 134, 50–71 (2017)

    Google Scholar 

  94. Mirjalili, S., Saremi, S., Mirjalili, S.M., Coelho, L.D.S.: Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst. Appl. 47, 106–119 (2016)

    Google Scholar 

  95. Mirjalili, S.Z., Mirjalili, S., Saremi, S., Faris, H., Aljarah, I.: Grasshopper optimization algorithm for multi-objective optimization problems. Appl. Intell. 48(4), 805–820 (2018)

    Google Scholar 

  96. Tejani, G.G., Kumar, S., Gandomi, A.H.: Multi-objective heat transfer search algorithm for truss optimization. Eng. Comput. (2019). https://doi.org/10.1007/s00366-020-01010-1

    Article  Google Scholar 

  97. Zitzler, E.: Evolutionary algorithms for multiobjective optimization: Methods and applications, vol. 63. Citeseer (1999)

  98. Mirjalili, S., Jangir, P., Saremi, S.: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Appl. Intell. 46(1), 79–95 (2017)

    Google Scholar 

  99. Sharifi, S.A., Babamir, S.M.: The clustering algorithm for efficient energy management in mobile ad-hoc networks. Comput. Netw. 166, 106983 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Masdari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadzadeh, A., Masdari, M., Gharehchopogh, F.S. et al. A hybrid multi-objective metaheuristic optimization algorithm for scientific workflow scheduling. Cluster Comput 24, 1479–1503 (2021). https://doi.org/10.1007/s10586-020-03205-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-020-03205-z

Keywords

Navigation