Skip to main content

Advertisement

Log in

Fuzzy logic based clustering algorithm for management in critical infrastructure

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Infrastructure interdependency is a bidirectional interconnection between entities of two infrastructures. These Critical Infrastructures (CIs) suffer from several attacks, vulnerabilities, and failures. Indeed a failure in one CI could lead to serious consequences on physical security, economic security, or public health. However, the protection of these infrastructures is essential. The clustering algorithm is considered as one of the best interesting solutions to reduce its impacts. This paper presents a new approach of the Fuzzy Logic-based clustering algorithm to better identify and understand the overall interconnections between entities in CI. The Fuzzy Logic based on the clustering algorithm is split into Cluster heads (CHs) election and Cluster Members formation (CMs) election. The CH is elected by quantifying the degree of dependency of each component and CM is elected by determining their criticality levels using Failure Mode and Effect Analysis method to determine their Number Priority of Risk. The simulation results demonstrate that by adopting our proposed approach, improved management in CIs is gained not only in enhancing the degree of inter/dependency but also in identifying the criticality of interdependencies, minimizing Round Time Trip of failures nodes detection and reduce uncertainty risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Chtioui, L., Baina, A., Bellafkih, M.: Interdependencies modeling for the purpose of critical infrastructures protection. In: 5th World Congress on Information and Communication Technologies, pp. 89–94 (2015)

  2. Ouyang, M.: Review on modeling and simulation of interdependent critical infrastructure systems. Reliab. Eng. Syst. Saf. 121, 43–60 (2014)

    Article  Google Scholar 

  3. Rinaldi, S.M., Peerenboom, J.P.: TK Kelly Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Syst. Mag. 21(6), 11–25 (2001)

    Article  Google Scholar 

  4. Zimmerman, R.: Social implications of infrastructure network interactions. J. Urban Technol. 8(3), 97–119 (2001)

    Article  Google Scholar 

  5. Dudenhoeffer, D.D., Permann, M.R., Manic, M.: CIMS: a framework for infrastructure interdependency modeling and analysis. In: Proceedings of the Winter Simulation Conference, pp. 478–485 (2006)

  6. Wallace, W.A., Mendonça, D.L,E., Mitchell, J., Chow, J.: Managing disruptions to critical interdependent infrastructures in the context of the 2001 World Trade Center attack. In: Natural Hazards Research and Applications Information Center, pp. 165–98 (2003)

  7. Lee II, E.E., Mitchell, J.E., Wallace, W.A.: Restoration of services in interdependent infrastructure systems: a network flows approach. IEEE Trans. Syst. Man Cybern. Part C 37(6), 1303–1317 (2007)

    Article  Google Scholar 

  8. Zhang, P., Peeta, S.: A generalized modeling framework to analyze interdependencies among infrastructure systems. Transp. Res. Part B 45(3), 553–579 (2001)

    Article  Google Scholar 

  9. Zimmerman, R., Restrepo, C.E.: Analyzing cascading effects within infrastructure sectors for consequence reduction. In: IEEE Conference on Technologies for Homeland Security, pp. 165–170 (2009)

  10. Casalicchio, E., Galli, E., Tucci, S.: Federated agent-based modeling and simulation approach to study interdependencies in IT critical infrastructures. In: 11th IEEE International Symposium on Distributed Simulation and Real-Time Applications, p. 182 (2007).

  11. Sterman, J.D.: System dynamics modeling: tools for learning in a complex world. Calif. Manag. Rev. 43(4), 8–25 (2001)

    Article  Google Scholar 

  12. Eusgeld, I., Nan, C., Dietz, S.: “System-of-systems” approach for interdependent critical infrastructures. Reliab. Eng. Syst. Saf. 96(6), 679–686 (2011)

    Article  Google Scholar 

  13. Nan, C., Eusgeld, I.: Adopting HLA standard for interdependency study. Reliab. Eng. Syst. Saf. 96(1), 149–159 (2011)

    Article  Google Scholar 

  14. Svendsen, N.K., Wolthusen, S.D.: Connectivity models of interdependency in mixed-type critical infrastructure networks. Inf. Secur. Tech. Rep. 12(1), 44–55 (2007)

    Article  Google Scholar 

  15. Di Giorgio, A., Liberati, F.: A Bayesian network-based approach to the critical infrastructure interdependencies analysis. IEEE Syst. J. 6(3), 510–519 (2012)

    Article  Google Scholar 

  16. Elmzabi, A., Bellafkih Ramdani, M.M.: An adaptive fuzzy clustering approach for the network management. World Acad. Sci. Eng. Technol. 31, 425–430 (2007)

    Google Scholar 

  17. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  Google Scholar 

  18. Chang, W.L., Pang, L.M., Tay, K.M.: Application of self-organizing map to failure modes and effects analysis methodology. Neurocomputing 249, 314–320 (2017)

    Article  Google Scholar 

  19. Kumru, M., Kumru, P.Y.: Fuzzy FMEA application to improve purchasing process in a public hospital. Appl. Soft Comput. 13(1), 721–733 (2013)

    Article  Google Scholar 

  20. Stergiopoulos, G., Kotzanikolaou, P., Theocharidou, M., Lykou, G., Gritzalis, D.: Time-based critical infrastructure dependency analysis for large-scale and cross-sectoral failures. Int. J. Crit. Infrastruct. Prot. 12, 46–60 (2016)

    Article  Google Scholar 

  21. Oliva, G., Setola, R., Barker, K.: Fuzzy importance measures for ranking key interdependent sectors under uncertainty. IEEE Trans. Reliab. 63(1), 42–57 (2014)

    Article  Google Scholar 

  22. Akgun, I., Kandakoglu, A., Ozok, A.F.: Fuzzy integrated vulnerability assessment model for critical facilities in combating the terrorism. Expert Syst. Appl. 37(5), 3561–3573 (2010)

    Article  Google Scholar 

  23. Yazdani, M., Alidoosti, A., Zavadskas, E.K.: Risk analysis of critical infrastructures using fuzzy COPRAS. Econ. Res.-Ekonomska istraživanja 24(4), 27–40 (2011)

    Article  Google Scholar 

  24. Liu, H.C., Liu, L., Liu, N.: Risk evaluation approaches in failure mode and effects analysis: a literature review. Expert Syst. Appl. 40(2), 828–838 (2013)

    Article  Google Scholar 

  25. Bowles, J.B., Peláez, C.E.: Fuzzy logic prioritization of failures in a system failure mode, effects and criticality analysis. Reliab. Eng. Syst. Saf. 50(2), 203–213 (1995)

    Article  Google Scholar 

  26. Wang, Y.M., Chin, K.S., Poon, G.K.K., Yang, J.B.: Risk evaluation in failure mode and effects analysis using fuzzy weighted geometric mean. Expert Syst. Appl. 36(2), 1195–1207 (2009)

    Article  Google Scholar 

  27. Liu, H.C., Liu, L., Liu, N., Mao, L.X.: Risk evaluation in failure mode and effects analysis with extended VIKOR method under fuzzy environment. Expert Syst. Appl. 39(17), 12926–12934 (2012)

    Article  Google Scholar 

  28. Liu, H., Deng, X., Jiang, W.: Risk evaluation in failure mode and effects analysis using fuzzy measure and fuzzy integral. Symmetry 9(8), 162 (2017)

    Article  Google Scholar 

  29. Braglia, M., Frosolini, M., Montanari, R.: Fuzzy TOPSIS approach for failure mode, effects and criticality analysis. Qual. Reliab. Eng. Int. 19(5), 425–443 (2003)

    Article  Google Scholar 

  30. Yang, Z., Bonsall, S., Wang, J.: Fuzzy rule-based Bayesian reasoning approach for prioritization of failures in FMEA. IEEE Trans. Reliab. 57(3), 517–528 (2008)

    Article  Google Scholar 

  31. Chin, K.S., Wang, Y.M., Poon, G.K.K., Yang, J.B.: Failure mode and effects analysis using a group-basse evidential reasoning approach. Comput. Oper. Res. 36(6), 1768–1779 (2009)

    Article  Google Scholar 

  32. Tooranloo, H.S., Ayatollah, A.S., Alboghobish, S.: Evaluating knowledge management failure factors using intuitionistic fuzzy FMEA approach. Knowl. Inf. Syst. 57(1), 183–205 (2018)

    Article  Google Scholar 

  33. Liu, H.C., You, J.X., Duan, C.Y.: An integrated approach for failure mode and effect analysis under interval-valued intuitionistic fuzzy environment. Int. J. Prod. Econ. 207, 163–172 (2019)

    Article  Google Scholar 

  34. Liu, H.C., You, J.X., You, X.Y., Shan, M.M.: A novel approach for failure mode and effects analysis using combination weighting and fuzzy VIKOR method. Appl. Soft Comput. 28, 579–588 (2015)

    Article  Google Scholar 

  35. Kasmi, O., Baina, A., Bellafkih, M.: Multi level integrity management in LTE/LTE-A networks. Adv. Sci. Technol. Eng. Syst. J. (ASTESJ) 2(3), 658–668 (2017)

    Article  Google Scholar 

  36. Mirkovic, D., Armitage, G., Branch, P.: A survey of round trip time prediction systems. IEEE Commun. Surv. Tutor. 20(3), 1758–1776 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ouafae Kasmi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasmi, O., Baina, A. & Bellafkih, M. Fuzzy logic based clustering algorithm for management in critical infrastructure. Cluster Comput 24, 433–458 (2021). https://doi.org/10.1007/s10586-020-03113-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-020-03113-2

Keywords

Navigation