Skip to main content

Advertisement

Log in

Detecting dental problem related brain disease using intelligent bacterial optimized associative deep neural network

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Nowadays, a lot of people have the oral health problems due to continuous changes in the lifestyle such as the person’s speech which can be affected by the malocclusion in teeth and the crooked teeth. The dental problems can cause cavity and bacterial infection. The dental and speech problems mostly can be related to the Alzheimer disease, and cognitive changes. Therefore, the dental information is collected from patients and analyzed by applying intelligent machine learning techniques. The gathered dental information is normalized by standardized min max approach. Further, different statistical parameters are derived which are huge in dimension. The optimal features are selected using grey wolf optimized approach. The method effectively selects the optimum dental features and the selected features are processed using bacterial optimized associative deep neural network. The network collects the Alzheimer disease features and compare them with the collected dental features to establish the brain related issues with dental features. The efficiency of the system is evaluated using experimental results and discussion. Thus, the introduced intelligent bacterial optimized associative deep neural network recognizes the relationship up to 98.98% of accuracy which is the maximum accuracy compared to other methods. Further, IBADNN-based Alzheimer detection system approach attains maximum predicting and selecting disease features (precision 98.65% and recall 99.03%) whereas other approaches such as OLVQ (precision 95.03% and recall 96.23%), HACANN (precision 96.36% and recall 96.91%) and GCNN (precision 97.47% and recall 97.512%) and attains low predicting and selecting accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stewart, R., Sabbah, W., Tsakos, G., et al.: Oral health and cognitive function in the Third National Health and Nutrition Examination Survey (NHANES III). Psychosom Med 70, 936–941 (2008)

    Article  Google Scholar 

  2. Abbayya, K., Puthanakar, N.Y., Naduwinmani, S., Chidambar, Y.S.: Association between Periodontitis and Alzheimer's Disease. N. Am. J. Med. Sci. 7(6), 241–246 (2015). https://doi.org/10.4103/1947-2714.159325

    Article  Google Scholar 

  3. Dominy, S., et al.: Porphyromonas gingivalisin Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv 5(10), eaau3333 (2019)

    Article  Google Scholar 

  4. Shimpi, N.A.: Development and evaluation of an interdisciplinary periodontal risk prediction tool using a machine learning approach. Theses Dissert. 1539 (2017)

  5. Perri, R., Serra, L., Carlesimo, G.A., Caltagirone, C.: Preclinical dementia: an Italian multicentre study on amnestic mild cognitive impairment. Dement. Geriatr. Cogn. Disord. 23, 289–300 (2007). https://doi.org/10.1159/000100871

    Article  Google Scholar 

  6. Delwel, S., Binnekade, T., Perez, R., Hertogh, C., Scherder, E., Lobbezoo, F.: Oral hygiene and oral health in older people with dementia: a comprehensive review with focus on oral soft tissues. Clin. Oral Invest. 22(1), 93–108 (2017)

    Article  Google Scholar 

  7. Tugnait, A., Heasman, P.A.: Radiographs in periodontal assessment. In: Horner, K., Eaton, K.A. (eds.) Selection Criteria for Dental Radiography, pp. 75–81. Faculty of General Dental Practice (UK), London (2013)

    Google Scholar 

  8. Preshaw, P.M.: Detection and diagnosis of periodontal conditions amenable to prevention. BMC Oral Health 15(Suppl 1), S5 (2015). https://doi.org/10.1186/1472-6831-15-S1-S5

    Article  Google Scholar 

  9. https://deskgram.net/explore/tags/alzheimeripu%C3%A7lar%C4%B1

  10. Gil-Montoya, J., Sánchez-Lara, I., Carnero-Pardo, C., Fornieles-Rubio, F., Montes, J., Barrios, R., Gonzalez-Moles, M., Bravo, M.: Oral hygiene in the elderly with different degrees of cognitive impairment and dementia. J. Am. Geriatr. Soc. 65(3), 642–647 (2016)

    Article  Google Scholar 

  11. Chuang, L.-Y., Wu, K.-C., Chang, H.-W., Yang, C.-H.: Support vector machine-based prediction for oral cancer using four snps in DNA repair genes. In: Proceedings of the international multiconference of engineers and computer scientists, March 16–18 2011 (2011)

  12. Chen, X., Clark, J.J.J., Chen, H., Naorungrom, S.: Cognitive impairment, oral self-care function and dental caries severity in community-dwelling older adults. Gerodontology. 32(1), 53–61 (2015). https://doi.org/10.1111/ger.12061

    Article  Google Scholar 

  13. Mirzaei, G., Adeli, A., Adeli, H.: Imaging and machine learning techniques for diagnosis of Alzheimer’s disease. Neurosci Rev (2016). https://doi.org/10.1515/revneuro-2016-0029

    Article  Google Scholar 

  14. Maroco, J., Silva, D., Rodrigues, A., Guerreiro, M., Santana, I., de Mendonça, A.: Data mining methods in the prediction of Dementia: a real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests. BMC Res Notes 4, 299 (2011). https://doi.org/10.1186/1756-0500-4-299

    Article  Google Scholar 

  15. Islam, J., Zhang, Y.: Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks”. Brain Inf 5, 2 (2018)

    Article  Google Scholar 

  16. Byeon, H., Jin, H., Cho, S.: Development of parkinson's disease dementia prediction model based on verbal memory, visuospatial memory, and executive function. J. Med. Imaging Health Inf. 7(7), 1517–1521 (2017)

    Article  Google Scholar 

  17. Gomathi, P., Baskar, S., Shakeel, M.P., Dhulipala, S.V.: Numerical Function optimization in brain tumor regions using reconfigured multi-objective bat optimization algorithm. J. Med. Imaging Health Inf. 9(3), 482–489 (2019)

    Article  Google Scholar 

  18. Lee, K.S., Chung, J.H., Choi, T.K., Suh, S.Y., Oh, B.H., Hong, C.H.: Peripheral cytokines and chemokines in Alzheimer's disease. Dement Geriatr Cogn Disord. 28, 281–287 (2009)

    Article  Google Scholar 

  19. Baskar, S., Dhulipala, V.R.S., Shakeel, P.M., Sridhar, K.P., Kumar, R.: Hybrid fuzzy based spearman rank correlation for cranial nerve palsy detection in MIoT environment. Health Technol. (2019). https://doi.org/10.1007/s12553-019-00294-8

    Article  Google Scholar 

  20. Tan, Z.S., Seshadri, S.: Inflammation in the Alzheimer's disease cascade: Culprit or innocent bystander? Alzheimers Res Ther. 2, 6 (2010)

    Article  Google Scholar 

  21. Shakeel, P.M., Desa, M.I., Burhanuddin, M.A.: Improved watershed histogram thresholding with probabilistic neural networks for lung cancer diagnosis for CBMIR systems. Tools Appl. Multimed. (2019). https://doi.org/10.1007/s11042-019-7662-9

    Article  Google Scholar 

  22. Papantonopoulos, G., Takahashi, K., Bountis, T., Loos, B.G.: Artificial neural networks for the diagnosis of aggressive periodontitis trained by immunologic parameters. PLoS ONE (2014). https://doi.org/10.1371/journal.pone.0089757

    Article  Google Scholar 

  23. Kaushik, A., Indu, S., Gupta, D.: A grey wolf optimization approach for improving the performance of wireless sensor networks. Wireless Pers Commun 106, 1429 (2019). https://doi.org/10.1007/s11277-019-06223-2

    Article  Google Scholar 

  24. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey Wolf Optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  25. Al-Betar, M.A., Awadallah, M.A., Faris, H., Aljarah, I., Hammouri, A.I.: Natural selection methods for Grey Wolf Optimizer. Expert Syst. Appl. 113, 481–498 (2018)

    Article  Google Scholar 

  26. Emary, E., Zawbaa, H.M., Hassanien, A.E.: Binary grey wolf optimization approaches for feature selection. Neurocomputing 172, 371–381 (2016)

    Article  Google Scholar 

  27. Das, S., Biswas, A., Dasgupta, S., Abraham, A.: Bacterial Foraging optimization algorithm: theoretical foundations, analysis, and applications. In: Abraham, A., Hassanien, A.E., Siarry, P., Engelbrecht, A. (eds.) Foundations of Computational Intelligence Volume 3. Studies in Computational Intelligence, vol 203. Springer, Berlin (2009)

    Google Scholar 

  28. Tripathy, M., Mishra, S., Lai, L.L., Zhang, Q.P.: Transmission loss reduction based on FACTS and bacteria foraging algorithm. In: Proceedings of the Parallel Problem Solving from Nature (PPSN '06), pp. 222–231, Reykjavik, Iceland, September 2006

  29. Kim, D.H., Cho C.H.: Bacterial foraging based neural network fuzzy learning. In: Proceedings of the Indian International Conference on Artificial Intelligence, pp. 2030–2036, Pune, India, December 2005

  30. Jain, A., Mishra, A., Shukla, A., et al.: A novel genetically optimized convolutional neural network for traffic sign recognition: a new benchmark on belgium and chinese traffic sign datasets. Neural Process. Lett. (2019). https://doi.org/10.1007/s11063-019-09991-x

    Article  Google Scholar 

  31. Shah, H., Ghazali, R., Nawi, N.M.: Hybrid Ant Bee Colony Algorithm for Volcano Temperature Prediction. In: Chowdhry, B.S., Shaikh, F.K., Hussain, D.M.A., Uqaili, M.A. (eds.) Emerging Trends and Applications in Information Communication Technologies. IMTIC 2012. Communications in Computer and Information Science, vol 281. Springer, Berlin (2012)

    Google Scholar 

  32. de Souza, R.M.C.R., de Silva Filho, T.: Optimized learning vector quantization classifier with an adaptive euclidean distance. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) Artificial Neural Networks—ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, p. 5768. Springer, Berlin (2009)

    Google Scholar 

  33. Shakeel, P.M., Burhanuddin, M.A., Desa, M.I.: Lung cancer detection from CT image using improved profuse clustering and deep learning instantaneously trained neural networks. Measurement (2019). https://doi.org/10.1016/j.measurement.2019.05.027

    Article  Google Scholar 

  34. Pandey, K.K., Pradhan, N.: An analytical and comparative study of various data preprocessing method in data mining. Int. J. Emerg. Technol. Adv. Eng. 4(10), 174–180 (2014)

    Google Scholar 

  35. Sun, X., Hu, C., Lei, G., Guo, Y., Zhu, J.: State feedback control for a PM hub motor based on grey wolf optimization algorithm. IEEE Trans. Power Electr. 35, 1136–1146 (2019)

    Article  Google Scholar 

  36. Mohamed Shakeel, P., Tobely, T.E.E., Al-Feel, H., Manogaran, G., Baskar, S.: Neural network based brain tumor detection using wireless infrared imaging sensor. IEEE Access (2019). https://doi.org/10.1109/ACCESS.2018.2883957

    Article  Google Scholar 

  37. Shakarami, M.R., Davoudkhani, I.F.: Wide-area power system stabilizer design based on grey wolf optimization algorithm considering the time delay. Electric. Power Syst. Res. 133, 149–159 (2016)

    Article  Google Scholar 

  38. Yan, Q., Zhang, J., Liu, H., Babu-Khan, S., Vassar, R., Biere, A.L., et al.: Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer's disease. J. Neurosci. 23, 7504–7509 (2003)

    Article  Google Scholar 

  39. Saqlain, S.M., Sher, M., Shah, F.A., et al.: Fisher score and Matthews correlation coefficient-based feature subset selection for heart disease diagnosis using support vector machines. Knowl. Inf. Syst. 58, 139 (2019). https://doi.org/10.1007/s10115-018-1185-y

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by Researchers Supporting Project number (RSP-2019/117), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Fouad.

Ethics declarations

Conflict of interest

It is assured that the authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, N.M., Fouad, H., Alsadon, O. et al. Detecting dental problem related brain disease using intelligent bacterial optimized associative deep neural network. Cluster Comput 23, 1647–1657 (2020). https://doi.org/10.1007/s10586-020-03104-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-020-03104-3

Keywords

Navigation