Energy-efficiency virtual machine placement based on binary gravitational search algorithm

Abstract

Cloud computing is a remarkable growing paradigm for hosting and offering services through the Internet. It attracted the most notorious business companies and resulted to an exponential increase of its users from simple end users to companies that deploy more and more of their system over the cloud. The amount of resources to provide the demand became tremendous. therefore, a great need energy supply. The world as we know is highly concerned about the environment and the energy-efficiency in all aspect of life and the domain of IT is one them. To deal with energy wastage in data centers, researches use Virtual machine placement as a main key to assure cloud consolidation and reduce power wastage. Several approaches were proposed for Virtual machine placement. This paper proposes a solution based on Binary gravitational search algorithm (BGSA) for the virtual machine placement in the heterogeneous data center. In this work, we compared the BGSA method to fit with virtual machines in data centers with particle swarm optimization, First-fit, Best-fit, and worst-fit. results showed significant difference of energy save comparing to other strategies. The results obtained gave the advantage to our approach and its better response with the increase of number of virtual machines.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research challenges. J Internet Serv. Appl. 1(1), 7–18 (2010)

    Article  Google Scholar 

  2. 2.

    “2018 trends in cloud computing”

  3. 3.

    “Green it: The new industry shock wave”

  4. 4.

    Dayarathna, M., Wen, Y., Fan, R.: Data center energy consumption modeling: a survey. IEEE Commun. Surv. Tutor. 18(1), 732–794 (2015)

    Article  Google Scholar 

  5. 5.

    Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Gener. Comput. Syst. 28(5), 755–768 (2012)

    Article  Google Scholar 

  6. 6.

    Chen, G., He, W., Liu, J., Nath, S., Rigas, L., Xiao, L., Zhao, F.: Energy-aware server provisioning and load dispatching for connection-intensive internet services. NSDI 8, 337–350 (2008)

    Google Scholar 

  7. 7.

    Kaur, T., Chana, I.: Energy efficiency techniques in cloud computing: a survey and taxonomy. ACM Comput. Surv. CSUR 48(2), 22 (2015)

    Google Scholar 

  8. 8.

    Le Sueur, E., Heiser, G.: Dynamic voltage and frequency scaling: The laws of diminishing returns. In: Proceedings of the 2010 International Conference on Power Aware Computing and Systems, pp. 1–8 (2010)

  9. 9.

    Arroba, P., Moya, J.M., Ayala, J.L., Buyya, R.: Dynamic voltage and frequency scaling-aware dynamic consolidation of virtual machines for energy efficient cloud data centers. Concurr. Comput. Pract. Exp. 29(10), e4067 (2017)

    Article  Google Scholar 

  10. 10.

    Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., Ghalsasi, A.: Cloud computing—the business perspective. Decision Support Syst. 51(1), 176–189 (2011)

    Article  Google Scholar 

  11. 11.

    Rosenblum, M., Garfinkel, T.: Virtual machine monitors: current technology and future trends. Computer 38(5), 39–47 (2005)

    Article  Google Scholar 

  12. 12.

    Li, X., Qian, Z., Lu, S., Wu, J.: Energy efficient virtual machine placement algorithm with balanced and improved resource utilization in a data center. Math. Comput. Model. 58(5–6), 1222–1235 (2013)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Khosravi, A., Garg, S.K., Buyya, R.: Energy and carbon-efficient placement of virtual machines in distributed cloud data centers. In: European Conference on Parallel Processing, pp. 317–328. Springer (2013)

  14. 14.

    Tang, M., Pan, S.: A hybrid genetic algorithm for the energy-efficient virtual machine placement problem in data centers. Neural Process. Lett. 41(2), 211–221 (2015)

    Article  Google Scholar 

  15. 15.

    Adamuthe, A.C., Pandharpatte, R.M., Thampi, G.T.: Multiobjective virtual machine placement in cloud environment. In: 2013 International Conference on Cloud & Ubiquitous Computing & Emerging Technologies, pp. 8–13. IEEE (2013)

  16. 16.

    Feller, E., Rilling, L., Morin, C.: Energy-aware ant colony based workload placement in clouds. In: Proceedings of the 2011 IEEE/ACM 12th International Conference on Grid Computing, pp. 26–33. IEEE Computer Society (2011)

  17. 17.

    Liu, X.-F., Zhan, Z.-H., Deng, J.D., Li, Y., Gu, T., Zhang, J.: An energy efficient ant colony system for virtual machine placement in cloud computing. IEEE Trans. Evol. Comput. 22(1), 113–128 (2016)

    Article  Google Scholar 

  18. 18.

    Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers. Concurr. Comput. Pract. Exp. 24(13), 1397–1420 (2012)

    Article  Google Scholar 

  19. 19.

    Wang, S., Liu, Z., Zheng, Z., Sun, Q., Yang, F.: Particle swarm optimization for energy-aware virtual machine placement optimization in virtualized data centers. In: 2013 International Conference on Parallel and Distributed Systems, pp. 102–109. IEEE (2013)

  20. 20.

    Kumar, D., Raza, Z.: A pso based vm resource scheduling model for cloud computing. In: 2015 IEEE International Conference on Computational Intelligence & Communication Technology, pp. 213–219. IEEE (2015)

  21. 21.

    Abdessamia, F., Tai, Y., Zhang, W., Shafiq, M.: An improved particle swarm optimization for energy-efficiency virtual machine placement. 2017 International Conference on Cloud Computing Research and Innovation (ICCCRI), pp. 7–13 (2017)

  22. 22.

    Al-Dulaimy, A., Itani, W., Zantout, R., Zekri, A.: Type-aware virtual machine management for energy efficient cloud data centers. Sustain. Comput. Inf. Syst. 19, 185–203 (2018)

    Google Scholar 

  23. 23.

    Ajmera, K., Tewari, T.K.: Greening the cloud through power-aware virtual machine allocation. In: 2018 Eleventh International Conference on Contemporary Computing (IC3), pp. 1–6. IEEE (2018)

  24. 24.

    Li, B., Li, J., Huai, J., Wo, T., Li, Q., Zhong, L.: Enacloud: An energy-saving application live placement approach for cloud computing environments. In: 2009 IEEE International Conference on Cloud Computing, pp. 17–24. IEEE (2009)

  25. 25.

    Dupont, C., Schulze, T., Giuliani, G., Somov, A., Hermenier, F.: An energy aware framework for virtual machine placement in cloud federated data centres. In: 2012 Third International Conference on Future Systems: Where Energy, Computing and Communication Meet (e-Energy), pp. 1–10. IEEE (2012)

  26. 26.

    Wu, Y., Tang, M., Fraser, W.: A simulated annealing algorithm for energy efficient virtual machine placement. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1245–1250. IEEE (2012)

  27. 27.

    Goudarzi, H., Pedram, M.: Energy-efficient virtual machine replication and placement in a cloud computing system. In: 2012 IEEE Fifth International Conference on Cloud Computing, pp. 750–757. IEEE (2012)

  28. 28.

    Huang, D., Yang, D., Zhang, H., Wu, L.: Energy-aware virtual machine placement in data centers. In: 2012 IEEE Global Communications Conference (GLOBECOM), pp. 3243–3249. IEEE (2012)

  29. 29.

    Le, K., Bianchini, R., Zhang, J., Jaluria, Y., Meng, J., Nguyen, T.D.: Reducing electricity cost through virtual machine placement in high performance computing clouds. In: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, p. 22. ACM (2011)

  30. 30.

    Li, Y., Li, W., Jiang, C.: A survey of virtual machine system: Current technology and future trends. In: 2010 Third International Symposium on Electronic Commerce and Security, pp. 332–336. IEEE (2010)

  31. 31.

    Yuvaraj, B., Palanivel, K.: A survey of virtual machine placement algorithms in cloud computing environment. Int. J. Recent Innov. Trends Comput. Commun. 3(I) (2015)

  32. 32.

    Nelson, M., Lim, B.-H., Hutchins, G. et al.: Fast transparent migration for virtual machines. In: USENIX Annual Technical Conference, General Track, pp. 391–394 (2005)

  33. 33.

    Akoush, S., Sohan, R., Rice, A., Moore, A.W., Hopper, A.: Predicting the performance of virtual machine migration. In: 2010 IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, pp. 37–46. IEEE (2010)

  34. 34.

    Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: Bgsa: binary gravitational search algorithm. Nat. Comput. 9(3), 727–745 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    Fan, X., Weber, W.-D., Barroso, L.A.: Power provisioning for a warehouse-sized computer, ACM SIGARCH Computer Architecture News, vol. 35, pp. 13–23. ACM (2007)

Download references

Acknowledgements

This work was supported in part by the National Key Research and Development Plan under Grant 2017YFB0801801, in part by the National Science Foundation of China (NSFC) under Grant 61672186 and Grant 61872110. Professor Zhang is the corresponding author.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wei-Zhe Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdessamia, F., Zhang, WZ. & Tian, YC. Energy-efficiency virtual machine placement based on binary gravitational search algorithm. Cluster Comput 23, 1577–1588 (2020). https://doi.org/10.1007/s10586-019-03021-0

Download citation

Keywords

  • Cloud computing
  • Green computing
  • Energy-efficiency
  • Optimization