Skip to main content

Advertisement

Log in

Enhancement of fraternal K-median algorithm with CNN for high dropout probabilities to evolve optimal time-complexity

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Machine learning era began to rule almost all the technologies, which influences the improvement of the performance due to its intelligent computing methodologies. Especially the Deep Learning algorithm plays a vital role in computing a human-like decision, which is considered to be the superior breakthrough technology of the century. Deep Learning algorithms generate a massive sum of features which is stacked and learned by many other neurons of the network in the term of links. Links initiated from the input and ends in the output of the network connecting many neurons on its path. The significant limitation of this network is its thirst towards the high computation power. This paper represents a methodology to make the system consume less computation requirement during its training or testing phase. In this process, an effective clustering algorithm (fraternal K-median clustering) is used as the preprocessing strategies, and as the second phase the dropout regularization procedure is implemented (in the Convolutional Neural Network, a type of Deep Learning algorithm) to eliminate most of the insignificant data. The dropout strategies used in the process helps in the improvement of accuracy by making the network overfit the decision of CNN, obtaining state-of-the-art results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akansu, A.N., Wouter, A.S., Ivan, W.S.: Emerging applications of wavelets: a review. Phys. Commun. 3(1), 1–18 (2010)

    Article  Google Scholar 

  2. Rabbani, H.: Image denoising in the steerable pyramid domain based on a local Laplace prior. Pattern Recogn. 42(9), 2181–2193 (2009)

    Article  MATH  Google Scholar 

  3. Ghassemian, H.: A review of remote sensing image fusion methods. Inf. Fus. 32, 75–89 (2016)

    Article  Google Scholar 

  4. Bullying, A., Ulf, B., Bernt, S.: A tutorial on human activity recognition using body-worn inertial sensors. ACM Comput. Surv. (CSUR) 46(3), 33 (2014)

    Google Scholar 

  5. Arunkumar, R., Karthigaikumar, P.: Multi-retinal disease classification by reduced deep learning features. Neural Comput. Appl. 28(2), 329–334 (2017)

    Article  Google Scholar 

  6. Patcha, A., Jung-Min, P.: An overview of anomaly detection techniques: existing solutions and latest technological trends. Comput. Netw. 51(12), 3448–3470 (2007)

    Article  Google Scholar 

  7. Van Merriënboer, J.G.J., Kirschner, P.A.: Ten steps to complex learning: a systematic approach to four-component instructional design. Routledge, Abingdon (2017)

    Google Scholar 

  8. Nagaraj, B., Vijayakumar, P.: Controller tuning for industrial process-A soft computing approach. Int. J. Adv. Soft Comput. Appl. 4(2), 302–320 (2012)

    Google Scholar 

  9. Witten, I.H., et al.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2016)

    MATH  Google Scholar 

  10. Nagaraj, N., Arunkumar, R., Karthigaikumar, P.: Meticulous fuzzy convolution C means for optimized big data analytics: adaptation towards deep learning. Int. J. Mach. Learn Cybern. (2019). https://doi.org/10.1007/s13042-019-00945-2

    Article  Google Scholar 

  11. Liu, W., et al.: A survey of deep neural network architectures and their applications. Neurocomputing 234, 11–26 (2017)

    Article  Google Scholar 

  12. Ravı, D., et al.: Deep learning for health informatics. IEEE J. Biomed. Health Inform. 21(1), 4–21 (2017)

    Article  Google Scholar 

  13. Hirschberg, J., Manning, C.D.: Advances in natural language processing. Science 349(6245), 261–266 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Soundharya, M., Arunkumar, R.: GDI based area delay power efficient carry select adder. Green Engineering and Technologies (IC-GET), In: 2015 Online International Conference on. IEEE, 2015

  15. Shroff, G.: The Intelligent Web: Search, Smart Algorithms, and Big Data. OUP, Oxford (2013)

    Google Scholar 

  16. Witten, I.H., et al.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2016)

    MATH  Google Scholar 

  17. Huang, G., et al.: Densely connected convolutional networks. CVPR 1(2) (2017)

  18. Arunkumar, R., Nagaraj, B.: Medical image classification for disease diagnosis by DBN methods. Pak. J. Biotechnol. 15(1), 107–110 (2018)

    Google Scholar 

  19. Misra, J., Saha, I.: Artificial neural networks in hardware: a survey of two decades of progress. Neurocomputing 74(1–3), 239–255 (2010)

    Article  Google Scholar 

  20. Nisi, K., Nagaraj, B., Agalya, A.: Tuning of a PID controller using evolutionary multi-objective optimization methodologies and application to the pulp and paper industry. Int. J. Mach. Learn Cybern. 10(8), 2015–2025 (2018)

    Article  Google Scholar 

  21. Berges, M.E., et al.: Enhancing electricity audits in residential buildings with nonintrusive load monitoring. J. Ind. Ecol. 14(5), 844–858 (2010)

    Article  Google Scholar 

  22. Dean, J.: Big Data, Data Mining, and Machine Learning: Value Creation for Business Leaders and Practitioners. Wiley, Hoboken (2014)

    Book  Google Scholar 

  23. Rajendran, A., Muthusamy, T.: Adaptive unsupervised Fuzzy C mean based image segmentation. Sci. J. Circuits Syst. Signal Process. 3(6–1), 1–5 (2014)

    Google Scholar 

  24. Ghahramani, Z.: Probabilistic machine learning and artificial intelligence. Nature 521(7553), 452 (2015)

    Article  Google Scholar 

  25. Edelman, S.: Language and other complex behaviors: unifying characteristics, computational models, neural mechanisms. Lang. Sci. 62, 91–123 (2017)

    Article  Google Scholar 

  26. Witten, I.H., et al.: Data mining: practical machine learning tools and techniques. Morgan Kaufmann, Burlington (2016)

    MATH  Google Scholar 

  27. Nagaraj, B., Vijayakumar, P.: Tuning of a PID controller using soft computing methodologies applied to basis weight control in paper machine. J. Korean Tech. Assoc. Pulp Paper Ind. 43(3), 1–10 (2011)

    Google Scholar 

  28. Oweis, N.E., et al.: A novel MapReduce lift association rule mining algorithm (MRLAR) for big data. Int. J. Adv. Comput. Sci. Appl. (2016). https://doi.org/10.14569/IJACSA.2016.070321

    Article  Google Scholar 

  29. Xu, D., Yingjie, T.: A comprehensive survey of clustering algorithms. Ann. Data. Sci. 2(2), 165–193 (2015)

    Article  Google Scholar 

  30. Nagaraj, B., Danilo, P., Joy, I.-Z.C.: Introductory editorial. Wirel. Pers. Commun. 94(4), 1935–1936 (2017)

    Article  Google Scholar 

  31. Lu, Y., et al.: Implementation of the fuzzy c-means clustering algorithm in meteorological data. Int. J. Datab. Theory Appl. 6(6), 1–18 (2013)

    Google Scholar 

  32. Vishnu, T., et al.: Efficient and early detection of osteoporosis using trabecular region. Green Engineering and Technologies (IC-GET). In: 2015 Online International Conference on. IEEE, 2015

  33. Nagaraj, B., Vijayakumar, P.: Tuning of a PID controller using soft computing methodologies applied to moisture control in paper machine. Int. J. Intell. Autom. Soft. Comput. J. USA 18(4), 399–411 (2012)

    Article  Google Scholar 

  34. Dinh, H.T., et al.: A survey of mobile cloud computing: architecture, applications, and approaches. Wirel. Commun. Mobile Comput. 13(18), 1587–1611 (2013)

    Article  Google Scholar 

  35. Gubbi, J., et al.: Internet of things (IoT): a vision, architectural elements, and future directions. Fut. Gener. Comput. Syst. 29(7), 1645–1660 (2013)

    Article  Google Scholar 

  36. Nagaraj, B., Dev, V.V.: Design of differential evolution optimized PI controller for a temperature process. J. Control Instrum. 3(3), 1–10 (2012)

    Google Scholar 

  37. Ma, C., et al.: Distributed optimization with arbitrary local solvers. Optim. Methods Softw. 32(4), 813–848 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. LeCun, Y.A., et al.: Efficient backdrop. In: Montavon, G., Orr, G.B., Müller, K.-B. (eds.) Neural Networks: Tricks of the Trade, pp. 9–48. Springer, Berlin (2012)

    Chapter  Google Scholar 

  39. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  40. Luo, X., Ibrahim, H.: Ensemble Kalman filtering with residual nudging: an extension to state estimation problems with nonlinear observation operators. Mon. Weather Rev. 142(10), 3696–3712 (2014)

    Article  Google Scholar 

  41. Liew, S.S., Mohamed, K.-H., Rabia, B.: An optimized second order stochastic learning algorithm for neural network training. Neurocomputing 186, 74–89 (2016)

    Article  Google Scholar 

  42. Maier, H.R., Dandy, G.C.: Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environ. Model Softw. 15(1), 101–124 (2000)

    Article  Google Scholar 

  43. Schmidt, M., Nicolas, L.R., Francis, B.: Minimizing finite sums with the stochastic average gradient. Math. Program. 162(1–2), 83–112 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hofmann, T. et al.: Variance reduced stochastic gradient descent with neighbors. Advances in Neural Information Processing Systems (2015)

  45. Nagaraj, B., Nisi, K.: A deep analysis on optimization techniques for appropriate PID tuning to incline efficient artificial pancreas. Neural Comput. Appl. 1, 1 (2018). https://doi.org/10.1007/s00521-018-3687-7

    Article  Google Scholar 

  46. Abdel-Maksoud, E., Mohammed, E., Rashid, A.-A.: Brain tumor segmentation based on a hybrid clustering technique. Egypt. Inform. J. 16(1), 71–81 (2015)

    Article  Google Scholar 

  47. Liu, H., et al.: A fast weak-supervised pulmonary nodule segmentation method based on modified self-adaptive FCM algorithm. Soft. Comput. 22(12), 3983–3995 (2018)

    Article  Google Scholar 

  48. Rajendran, A., Nagaraj, B., Mithya, V.: Malleable fuzzy local median C means algorithm for effective biomedical image segmentation. Sens. Imaging 17(1), 24 (2016)

    Article  Google Scholar 

  49. Nagaraj, B., Murugananth, R.: Optimum PID controller tuning using soft computing methodologies for industrial process. J. Comput. Sci. 4(5), 1761–1768 (2010)

    Google Scholar 

  50. Ju, C., Chonghuan, X.: A new collaborative recommendation approach based on users clustering using artificial bee colony algorithm. Sci. World J. 1, 1 (2013). https://doi.org/10.1155/2013/869658

    Article  Google Scholar 

  51. Nagaraj, B., Murugananth, R.: Optimum tuning algorithms for PID controller—a soft computing approach. Int. J. Pulp Paper. Tech. Assoc. 22(2), 127–129 (2010)

    Google Scholar 

  52. Vala, M.H.J., Baxi, A.: A review on Otsu image segmentation algorithm. Int. J. Adv. Res. Comput. Eng. Technol. 2(2), 387 (2013)

    Google Scholar 

  53. Alam, S., et al.: Research on particle swarm optimization based clustering: a systematic review of literature and techniques. Swarm Evolut. Comput. 17, 1–13 (2014)

    Article  Google Scholar 

  54. Wu, J.: Advances in K-Means Clustering: A Data Mining Thinking. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balakrishnan Nagaraj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagaraj, B., Arunkumar, R., Nisi, K. et al. Enhancement of fraternal K-median algorithm with CNN for high dropout probabilities to evolve optimal time-complexity. Cluster Comput 23, 2001–2008 (2020). https://doi.org/10.1007/s10586-019-02963-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-019-02963-9

Keywords

Navigation