Advertisement

Accelerated particle swarm optimization with explicit consideration of model constraints

  • Lucia Damiani
  • Ariel I. Diaz
  • Javier IparraguirreEmail author
  • Aníbal M. Blanco
Article
  • 72 Downloads

Abstract

Population based metaheuristic can benefit from explicit parallelization in order to address complex numerical optimization problems. Typical realistic problems usually involve non-linear functions and many constraints, making the identification of global optimal solutions mathematically challenging and computationally expensive. In this work, a GPU based parallelized version of the Particle Swarm Optimization technique is proposed. The main contribution is the explicit consideration of equality and inequality constraints of general type, rather than addressing only box constrained models as typically done in acceleration studies of optimization algorithms. The implementation is tested on a set of optimization problems that serve as benchmark. Speedups averaging 299x were obtained with a single GPU on a standard PC using the PyCUDA technology. Satisfactory feasibility and optimality rates are also achieved, although a standard parameterization was adopted for all the experiments. Additional results are reported on a small set of difficult problems involving bilinear non-linearities.

Keywords

Numerical optimization Particle swarm optimization GPU 

Notes

Acknowledgements

This research was partially supported by grants from Consejo Nacional de InvestigacionesCientíficas y Técnicas (CONICET) and Universidad Tecnológica Nacional (UTN) of Argentina. The authors also gratefully acknowledge the support of NVIDIA Corporation with the donation of the TITAN X GPU used in this research.

References

  1. 1.
    Adams II, T.A., Seider, W.D.: Practical optimization of complex chemical processes with tight constraints. Comput. Chem. Eng. 32(9), 2099–2112 (2008)CrossRefGoogle Scholar
  2. 2.
    Adhya, N., Tawarmalani, M., Sahinidis, N.V.: A lagrangian approach to the pooling problem. Ind. Eng. Chem. Res. 38(5), 1956–1972 (1999)CrossRefGoogle Scholar
  3. 3.
    Alba, E., Luque, G., Nesmachnow, S.: Parallel metaheuristics: recent advances and new trends. Int. Trans. Oper. Res. 20(1), 1–48 (2013)CrossRefzbMATHGoogle Scholar
  4. 4.
    Ali, M., Kaelo, P.: Improved particle swarm algorithms for global optimization. Appl. Math. Comput. 196(2), 578–593 (2008)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bastos-Filho, C., Junior, M.O., Nascimento, D.: Running particle swarm optimization on graphic processing units. In: Search Algorithms and Applications. InTech (2011)Google Scholar
  6. 6.
    Blum, C., Puchinger, J., Raidl, G.R., Roli, A.: Hybrid metaheuristics in combinatorial optimization: a survey. Appl. Soft Comput. 11(6), 4135–4151 (2011)CrossRefzbMATHGoogle Scholar
  7. 7.
    Boussaïd, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics. Inf. Sci. 237, 82–117 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chen, T.Y., Chi, T.M.: On the improvements of the particle swarm optimization algorithm. Adv. Eng. Softw. 41(2), 229–239 (2010)CrossRefzbMATHGoogle Scholar
  9. 9.
    Chen, Y.W., Wang, L.C., Wang, A., Chen, T.L.: A particle swarm approach for optimizing a multi-stage closed loop supply chain for the solar cell industry. Robot. Comput. Integr. Manuf. 43, 111–123 (2017)CrossRefGoogle Scholar
  10. 10.
    Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput. Methods Appl. Mech. Eng. 191(11–12), 1245–1287 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Crawford, B., Soto, R., Astorga, G., García, J., Castro, C., Paredes, F.: Putting continuous metaheuristics to work in binary search spaces. Complexity. (2017).  https://doi.org/10.1155/2017/8404231
  12. 12.
    Damiani, L., Diaz, A.I., Iparraguirre, J., Blanco, A.M.: Accelerated numerical optimization with explicit consideration of model constraints. In: Latin American High Performance Computing Conference, pp. 255–261. Springer, New York (2017)Google Scholar
  13. 13.
    Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995 (MHS’95), pp. 39–43. IEEE (1995)Google Scholar
  14. 14.
    Engelbrecht, A.P., Cleghorn, C.W.: Particle swarm optimization: a guide to effective, misconception free, real world use. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 831–857. ACM (2018)Google Scholar
  15. 15.
    Erbeyoğlu, G., Bilge, Ü.: Pso-based and sa-based metaheuristics for bilinear programming problems: an application to the pooling problem. J. Heuristics 22(2), 147–179 (2016)CrossRefGoogle Scholar
  16. 16.
    Hung, Y., Wang, W.: Accelerating parallel particle swarm optimization via GPU. Optim. Methods Softw. 27(1), 33–51 (2012)CrossRefzbMATHGoogle Scholar
  17. 17.
    Kayhan, A.H., Ceylan, H., Ayvaz, M.T., Gurarslan, G.: Psolver: a new hybrid particle swarm optimization algorithm for solving continuous optimization problems. Expert Syst. Appl. 37(10), 6798–6808 (2010)CrossRefGoogle Scholar
  18. 18.
    Laguna-Sánchez, G.A., Olguín-Carbajal, M., Cruz-Cortés, N., Barrón-Fernández, R., Álvarez-Cedillo, J.A.: Comparative study of parallel variants for a particle swarm optimization algorithm implemented on a multithreading GPU. J. Appl. Res. Technol. 7(3), 292–307 (2009)Google Scholar
  19. 19.
    Lang, J., Zhao, J.: Modeling and optimization for oil well production scheduling. Chin. J. Chem. Eng. 24(10), 1423–1430 (2016)CrossRefGoogle Scholar
  20. 20.
    Liang, J., Runarsson, T.P., Mezura-Montes, E., Clerc, M., Suganthan, P.N., Coello, C.C., Deb, K.: Problem definitions and evaluation criteria for the cec 2006 special session on constrained real-parameter optimization. J. Appl. Mech. 41(8), 8–31 (2006)Google Scholar
  21. 21.
    Marini, F., Walczak, B.: Particle swarm optimization (pso). a tutorial. Chemom. Intell. Lab. Syst. 149, 153–165 (2015)CrossRefGoogle Scholar
  22. 22.
    Montain, M.E., Blanco, A.M., Bandoni, J.A.: Optimal drug infusion profiles using a particle swarm optimization algorithm. Comput. Chem. Eng. 82, 13–24 (2015)CrossRefGoogle Scholar
  23. 23.
    Murtagh, B.A., Saunders, M.A.: Minos 5.4 user’s guide (preliminary). Tech. rep., Department of Operations Research, Stanford University (1987)Google Scholar
  24. 24.
    Mussi, L., Daolio, F., Cagnoni, S.: Evaluation of parallel particle swarm optimization algorithms within the \(\text{ CUDA }^{{\rm TM}}\) architecture. Inf. Sci. 181(20), 4642–4657 (2011)CrossRefGoogle Scholar
  25. 25.
    Mussi, L., Nashed, Y.S., Cagnoni, S.: GPU-based asynchronous particle swarm optimization. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 1555–1562. ACM (2011)Google Scholar
  26. 26.
    NumPy: NumPy homepage. http://www.numpy.org/. Accessed 05 Nov 2018
  27. 27.
    NVIDIA: PyCuda reference. https://developer.nvidia.com/pycuda. Accessed 05 Nov 2018
  28. 28.
    Roberge, V., Tarbouchi, M.: Parallel particle swarm optimization on graphical processing unit for pose estimation. WSEAS Trans. Comput. 11(6), 170–179 (2012)Google Scholar
  29. 29.
    Shokrian, M., High, K.A.: Application of a multi objective multi-leader particle swarm optimization algorithm on NLP and MINLP problems. Comput. Chem. Eng. 60, 57–75 (2014)CrossRefGoogle Scholar
  30. 30.
    Souza, D., Teixeira, O., Monteiro, D., de Oliveira, R.: A cuda-based cooperative evolutionary multi-swarm optimization applied to engineering problems. In: Proc. of the XXXII Congress of the Brazilian Computing Society (2012)Google Scholar
  31. 31.
    Tan, Y., Ding, K.: A survey on GPU-based implementation of swarm intelligence algorithms. IEEE Trans. Cybern. 46(9), 2028–2041 (2016)CrossRefGoogle Scholar
  32. 32.
    Tawarmalani, M., Sahinidis, N.V., Sahinidis, N.: Convexification and global optimization in continuous and mixed-integer nonlinear programming: theory, algorithms, software, and applications, vol. 65. Springer Science & Business Media, New York (2002)zbMATHGoogle Scholar
  33. 33.
    Wachowiak, M., Foster, A.L.: GPU-based asynchronous global optimization with particle swarm. J. Phys. Conf. Ser. 385, 012012 (2012)CrossRefGoogle Scholar
  34. 34.
    Yiqing, L., Xigang, Y., Yongjian, L.: An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints. Comput. Chem. Eng. 31(3), 153–162 (2007)CrossRefGoogle Scholar
  35. 35.
    Zhang, H., Rangaiah, G.P.: An efficient constraint handling method with integrated differential evolution for numerical and engineering optimization. Comput. Chem. Eng. 37, 74–88 (2012)CrossRefGoogle Scholar
  36. 36.
    Zhou, Y., Tan, Y.: GPU-based parallel particle swarm optimization. In: IEEE Congress on Evolutionary Computation, 2009 (CEC’09), pp. 1493–1500. IEEE (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Planta Piloto de Ingeniería Química (PLAPIQUI), Universidad Nacional del Sur - CONICETBahía BlancaArgentina
  2. 2.Universidad Tecnológica Nacional, Facultad Regional Bahía BlancaBahía BlancaArgentina

Personalised recommendations