Abstract
This article presents an empirical evaluation of power consumption for scientific computing applications in multicore systems. Three types of applications are studied, in single and combined executions on Intel and AMD servers, for evaluating the overall power consumption of each application. The main results indicate that power consumption behavior has a strong dependency with the type of application. Additional performance analysis shows that the best load of the server regarding energy efficiency depends on the type of the applications, with efficiency decreasing in heavily loaded situations. These results allow formulating a model to characterize applications according to power consumption, efficiency, and resource sharing, which provide useful information for resource management and scheduling policies. Several scheduling strategies are evaluated using the proposed energy model over realistic scientific computing workloads. Results confirm that strategies that maximize host utilization provide the best energy efficiency and performance results.
This is a preview of subscription content, access via your institution.
















References
Buyya, R., Vecchiola, C., Selvi, S.: Mastering Cloud Computing: Foundations and Applications Programming. Morgan Kaufmann, San Francisco, CA (2013)
Dayarathna, M., Wen, Y., Fan, R.: Data center energy consumption modeling: a survey. IEEE Commun. Surv. Tutor. 18(1), 732–794 (2016)
Nesmachnow, S., Perfumo, C., Goiri, I.: Holistic multiobjective planning of datacenters powered by renewable energy. Clust. Comput. 18(4), 1379–1397 (2015)
Anghel, A., Vasilescu, L., Mariani, G., Jongerius, R., Dittmann, G.: An instrumentation approach for hardware-agnostic software characterization. Int. J. Parallel Program. 44(5), 924–948 (2016)
Brandolese, C., Corbetta, S., Fornaciari, W.: Software energy estimation based on statistical characterization of intermediate compilation code. In: International Symposium on Low Power Electronics and Design, pp. 333–338 (2011)
Kurowski, K., Oleksiak, A., Piątek, W., Piontek, T., Przybyszewski, A., Węglarz, J.: Dcworms-a tool for simulation of energy efficiency in distributed computing infrastructures. Simul. Model. Pract. Theory 39, 135–151 (2013)
Hernández, S., Fabra, J., Álvarez, P., Ezpeleta, J.: Simulation and realistic workloads to support the meta-scheduling of scientific workflows. In: Simulation and Modeling Methodologies, Technologies and Applications, pp. 155–167. Springer, Cham (2014)
Bak, S., Krystek, M., Kurowski, K., Oleksiak, A., Piatek, W., Waglarz, J.: GSSIM-a tool for distributed computing experiments. Sci. Program. 19(4), 231–251 (2011)
Malhotra, R., Jain, P.: Study and comparison of various cloud simulators available in the cloud computing. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(9), 347–350 (2013)
Calheiros, R.N., Ranjan, R., Beloglazov, A., de Rose, C.A., Buyya, R.: Cloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw.: Pract. Exp. 41(1), 23–50 (2011)
Armenta-Cano, F., Tchernykh, A., Cortes-Mendoza, J., Yahyapour, R., Drozdov, A.Y., Bouvry, P., Kliazovich, D., Avetisyan, A., Nesmachnow, S.: Min\_c: heterogeneous concentration policy for energy-aware scheduling of jobs with resource contention. Program. Comput. Softw. 43(3), 204–215 (2017)
Muraña, J., Nesmachnow, S., Iturriaga, S., Tchernykh, A.: Power consumption characterization of synthetic benchmarks in multicores. In: High Performance Computing, pp. 21–37. Springer, Cham (2018)
Repko, A.F.: Interdisciplinary research: process and theory. SAGE, Los Angeles (2008)
Iturriaga, S., García, S., Nesmachnow, S.: An empirical study of the robustness of energy-aware schedulers for high performance computing systems under uncertainty. In: High Performance Computing, pp. 143–157. Springer, Berlin (2014)
Nesmachnow, S., Dorronsoro, B., Pecero, J., Bouvry, P.: Energy-aware scheduling on multicore heterogeneous grid computing systems. J. Grid Comput. 11(4), 653–680 (2013)
Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud computing. In: Conference on Power Aware Computing and Systems, pp. 1–5 (2008)
Du Bois, K., Schaeps, T., Polfliet, S., Ryckbosch, F., Eeckhout, L.: Sweep: Evaluating computer system energy efficiency using synthetic workloads. In: 6\(^{th}\) International Conference on High Performance and Embedded Architectures and Compilers, pp. 159–166 (2011)
Feng, X., Ge, R., Cameron, K.: Power and energy profiling of scientific applications on distributed systems. In: 19\(^{th}\) IEEE International Parallel and Distributed Processing Symposium, pp. 34–44 (2005)
Langer, A., Totoni, E., Palekar, U.S., Kalé, L.: Energy-efficient computing for HPC workloads on heterogeneous manycore chips. In: Proceedings of the 6\(^{th}\) International Workshop on Programming Models and Applications for Multicores and Manycores, pp. 11–19 (2015)
Barroso, L., Clidaras, J., Hölzle, U.: The datacenter as a computer: an introduction to the design of warehouse-scale machines. Synth. Lect. Comput. Archit. 8(3), 1–154 (2013)
Malladi, K., Nothaft, F., Periyathambi, K., Lee, B., Kozyrakis, C., Horowitz, M.: Towards energy-proportional datacenter memory with mobile dram. In: 39th Annual International Symposium on Computer Architecture, pp. 37–48 (2012)
Totoni, E., Jain, N., Kalé, L.: Toward runtime power management of exascale networks by on/off control of links. In: IEEE International Symposium on Parallel Distributed Processing, Workshops and Phd Forum, pp. 915–922 (2013)
Kliazovich, D., Bouvry, P., Audzevich, Y., Khan, S.: Greencloud: A packet-level simulator of energy-aware cloud computing data centers. In: IEEE Global Telecommunications Conference, pp. 1–5 (2010)
Núñez, A., Vázquez-Poletti, J., Caminero, A., Castañé, G., Carretero, J., Llorente, I.: Icancloud: a flexible and scalable cloud infrastructure simulator. J. Grid Comput. 10(1), 185–209 (2012)
Kopytov, A.: Sysbench repository. https://github.com/akopytov/sysbench, online. Accessed 01 June 2017
Nesmachnow, S.: Computación científica de alto desempeño en la Facultad de Ingeniería, Universidad de la República. Revista de la Asociación de Ingenieros del Uruguay 61(1), 12–15 (2010). Text in Spanish
Leung, J., Kelly, L., Anderson, J.: Handbook of scheduling: algorithms, models, and performance analysis. CRC Press Inc, Boca Raton, FL (2004)
Intel Xeon E52643v3 vs AMD Opteron 6172 comparison. http://cpuboss.com/cpus/Intel-Xeon-E5-2643-v3-vs-AMD-Opteron-6172, online. Accessed 29 March 2018
Gao, Y., Guan, H., Qi, Z., Song, T., Huan, F., Liu, L.: Service level agreement based energy-efficient resource management in cloud data centers. Comput. Electr. Eng. 40(5), 1621–1633 (2014)
McKinney, W.: pandas: a foundational python library for data analysis and statistics. Python High Perform. Sci. Comput., 1–9 (2011)
Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., Willing, C.: Jupyter notebooks: a publishing format for reproducible computational workflows. In: Positioning and Power in Academic Publishing: Players, Agents and Agendas, pp. 87–90. IOS Press, Göttingen (2016)
Begley, C.G.: Six red flags for suspect work. Nature 497(7450), 433–434 (2013)
Theil, H.: Economic forecasts and policy. North-Holland, Amsterdam (1961)
Feitelson, D.G., Tsafrir, D., Krakov, D.: Experience with using the parallel workloads archive. J. Parallel Distrib. Comput. 74(10), 2967–2982 (2014)
Tchernykh, A., Lozano, L., Bouvry, P., Pecero, J.E., Schwiegelshohn, U., Nesmachnow, S.: Energy-aware online scheduling: ensuring quality of service for iaas clouds. In: International Conference on High Performance Computing Simulation, pp. 911–918 (2014)
Jackson, D., Snell, Q., Clement, M.: Core algorithms of the Maui scheduler. In: Job Scheduling Strategies for Parallel Processing, pp. 87–102. Springer, Berlin (2001)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Muraña, J., Nesmachnow, S., Armenta, F. et al. Characterization, modeling and scheduling of power consumption of scientific computing applications in multicores. Cluster Comput 22, 839–859 (2019). https://doi.org/10.1007/s10586-018-2882-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10586-018-2882-8
Keywords
- Green computing
- Energy efficiency
- Multicores
- Energy model
- Cloud simulator