A self-scalable distributed network simulation environment based on cloud computing


While parameter sweep simulations can help undergraduate students and researchers to understand computer networks, their usage in the academia is hindered by the significant computational load they convey. This paper proposes DNSE3, a service oriented computer network simulator that, deployed in a cloud computing infrastructure, leverages its elasticity and pay-per-use features to compute parameter sweeps. The performance and cost of using this application is evaluated in several experiments applying different scalability policies, with results that meet the demands of users in educational institutions. Additionally, the usability of the application has been measured following industry standards with real students, yielding a very satisfactory user experience.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Amazon Web Services, Inc.: Amazon Web Services. https://aws.amazon.com/

  2. 2.

    Amazon Web Services, Inc.: What is Amazon EC2 Auto Scaling? https://docs.aws.amazon.com/autoscaling/ec2/userguide/

  3. 3.

    Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling for multiprogrammed multiprocessors. In: ACM Symposium on Parallel Algorithms and Architectures, pp. 119–129 (1998). https://doi.org/10.1145/277651.277678

  4. 4.

    Bangor, A., Kortum, P.T., Miller, J.T.: An empirical evaluation of the system usability scale. Int. J. Hum. Comput. Interact. 24(6), 574–594 (2008). https://doi.org/10.1080/10447310802205776

    Article  Google Scholar 

  5. 5.

    Behrisch, M., Bieker, L., Erdmann, J., Krajzewicz, D.: SUMO—simulation of urban mobility. In: International Conference on Advances in System Simulation, pp. 63–68 (2011)

  6. 6.

    Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work stealing. J. ACM 46(5), 720–748 (1999). https://doi.org/10.1145/324133.324234

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Bootstrap: an open source toolkit for developing with HTML, CSS, and JS. http://getbootstrap.com/

  8. 8.

    Bote-Lorenzo, M.L., Asensio-Pérez, J.I., Gómez-Sánchez, E., Vega-Gorgojo, G., Alario-Hoyos, C.: A grid service-based distributed network simulation environment for computer networks education. Comput. Appl. Eng. Educ. 20(4), 654–665 (2012). https://doi.org/10.1002/cae.20435

    Article  Google Scholar 

  9. 9.

    Bragard, Q., Ventresque, A., Murphy, L.: Self-balancing decentralized distributed platform for urban traffic simulation. IEEE Trans. Intell. Transp. Syst. 18(5), 1190–1197 (2017). https://doi.org/10.1109/TITS.2016.2603171

    Article  Google Scholar 

  10. 10.

    Brooke, J.: SUS: a quick and dirty usability scale. In: Jordan, P.W., Thomas, B., McClelland, I.L., Weerdmeester, B. (eds.) Usability Evaluation in Industry, pp. 189–194. Taylor & Francis, London (1996)

    Google Scholar 

  11. 11.

    Brooke, J.: SUS: a retrospective. J. Usability Studies 8(2), 29–40 (2013)

    Google Scholar 

  12. 12.

    Caglar, F., Shekhar, S., Gokhale, A., Basu, S., Rafi, T., Kinnebrew, J., Biswas, G.: Cloud-hosted simulation-as-a-service for high school STEM education. Simul. Modell. Pract. Theory 58, 255–273 (2015). https://doi.org/10.1016/j.simpat.2015.06.006

    Article  Google Scholar 

  13. 13.

    Calcavecchia, N.M., Caprarescu, B.A., Di Nitto, E., Dubois, D.J., Petcu, D.: Depas: a decentralized probabilistic algorithm for auto-scaling. Computing 94(8), 701–730 (2012). https://doi.org/10.1007/s00607-012-0198-8

    Article  MATH  Google Scholar 

  14. 14.

    Cao, Y., Jin, X., Li, Z.: A distributed simulation system and its application. Simul. Modell. Prac. Theory 15(1), 21–31 (2007). https://doi.org/10.1016/j.simpat.2006.09.010

    Article  Google Scholar 

  15. 15.

    Evangelidis, A., Parker, D., Bahsoon, R.: Performance modelling and verification of cloud-based auto-scaling policies. In: 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp. 355–364 (2017). https://doi.org/10.1109/CCGRID.2017.39

  16. 16.

    Fielding, R.T.: Architectural syles and the design of network-based software architectures. Ph.D. thesis, University of California, Irvine (2000)

  17. 17.

    Foster, I.: Globus toolkit version 4: software for service-oriented systems. J. Comput. Sci. Technol. 21(4), 513 (2006). https://doi.org/10.1007/s11390-006-0513-y

    Article  Google Scholar 

  18. 18.

    Fujimoto, R.M.: Research challenges in parallel and distributed simulation. ACM Trans. Modell. Comput. Simul. (2016). https://doi.org/10.1145/2866577

    MathSciNet  Article  Google Scholar 

  19. 19.

    Fujimoto, R.M., Malik Fujimoto, R.M., Malik, A.W.: Parallel and distributed simulation in the cloud. SCS Modell. Simul. Mag. 1(3), 1–10 (2010)

    Google Scholar 

  20. 20.

    Ghanbari, H., Simmons, B., Litoiu, M., Iszlai, G.: Exploring alternative approaches to implement an elasticity policy. In: 2011 IEEE 4th International Conference on Cloud Computing, pp. 716–723 (2011). https://doi.org/10.1109/CLOUD.2011.101

  21. 21.

    González-Martínez, J.A., Bote-Lorenzo, M.L., Gómez-Sánchez, E., Cano-Parra, R.: Cloud computing and education: a state-of-the-art survey. Comput. Educ. 80, 132–151 (2015). https://doi.org/10.1016/j.compedu.2014.08.017

    Article  Google Scholar 

  22. 22.

    Google LLC: Google App Engine. https://cloud.google.com/appengine

  23. 23.

    Hasan, M.Z., Magana, E., Clemm, A., Tucker, L., Gudreddi, S.L.D.: Integrated and autonomic cloud resource scaling. In: 2012 IEEE Network Operations and Management Symposium, pp. 1327–1334 (2012). https://doi.org/10.1109/NOMS.2012.6212070

  24. 24.

    Huang, C.S., Tsai, M.F., Huang, P.H., Su, L.D., Lee, K.S.: Distributed asteroid discovery system for large astronomical data. J. Netw. Comput. Appl. 93, 27–37 (2017). https://doi.org/10.1016/j.jnca.2017.03.013

    Article  Google Scholar 

  25. 25.

    Hüning, C., Adebahr, M., Thiel-Clemen, T., Dalski, J., Lenfers, U., Grundmann, L.: Modeling and simulation as a service with the massive multi-agent system MARS. In: Agent-Directed Simulation Symposium, pp. 1–8 (2016)

  26. 26.

    Indhumathi, V., Nasira, G.M.: Service oriented architecture for load balancing with fault tolerant in grid computing. In: IEEE International Conference on Advances in Computer Applications (ICACA), pp. 313–317 (2016). https://doi.org/10.1109/ICACA.2016.7887972

  27. 27.

    Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulations and Modelling. Wiley, New York (1991)

    Google Scholar 

  28. 28.

    Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis. McGraw-Hill, New York (1991)

    Google Scholar 

  29. 29.

    Lewis, J.R.: Usability: lessons learned...and yet to be learned. Int. J. Hum. Comput. Interact. 30(9), 663–684 (2014). https://doi.org/10.1080/10447318.2014.930311

    Article  Google Scholar 

  30. 30.

    Lin, H.C.K., Chen, M.C., Chang, C.K.: Assessing the effectiveness of learning solid geometry by using an augmented reality-assisted learning system. Interact. Learn. Environ. 23(6), 799–810 (2015). https://doi.org/10.1080/10494820.2013.817435

    Article  Google Scholar 

  31. 31.

    Martin-Gonzalez, A., Chi-Poot, A., Uc-Cetina, V.: Usability evaluation of an augmented reality system for teaching euclidean vectors. Innov. Educ. Teach. Int. 53(6), 627–636 (2016). https://doi.org/10.1080/14703297.2015.1108856

    Article  Google Scholar 

  32. 32.

    Microsoft: Microsoft Azure. https://azure.microsoft.com/

  33. 33.

    OASIS: OASIS Web Services Resource Framework (WSRF). https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf

  34. 34.

    OpenStack: OpenStack Open Source Cloud Computing Software. https://www.openstack.org/

  35. 35.

    Papadopoulos, C., Heidemann, J.: Using ns in the classroom and lab. In: ACM SIGCOMM Workshop on Computer Networking, pp. 45–46. Pittsburgh (2002)

  36. 36.

    Qu, C., Calheiros, R.N., Buyya, R.: A reliable and cost-efficient auto-scaling system for web applications using heterogeneous spot instances. J. Netw. Comput. Appl. 65, 167–180 (2016). https://doi.org/10.1016/j.jnca.2016.03.001

    Article  Google Scholar 

  37. 37.

    Qun, Z.A., Jun, W.: Application of ns2 in education of computer networks. In: IEEE International Conference on Advanced Computer Theory and Engineering, pp. 368–372 (2008). https://doi.org/10.1109/ICACTE.2008.89

  38. 38.

    Ravindhren, V.G., Ravimaran, S.: Ccma–cloud critical metric assessment framework for scientific computing. Clust. Comput. (2017). https://doi.org/10.1007/s10586-017-1384-4

  39. 39.

    Restlet, Inc.: Restlet Framework. https://restlet.com/open-source/

  40. 40.

    Roy, N., Dubey, A., Gokhale, A.: Efficient autoscaling in the cloud using predictive models for workload forecasting. In: 2011 IEEE 4th International Conference on Cloud Computing, pp. 500–507 (2011). https://doi.org/10.1109/CLOUD.2011.42

  41. 41.

    Tashkandi, A.N., Al-Jabri, I.M.: Cloud computing adoption by higher education institutions in Saudi Arabia: an exploratory study. Clust. Comput. 18(4), 1527–1537 (2015). https://doi.org/10.1007/s10586-015-0490-4

    Article  Google Scholar 

  42. 42.

    The Apache Software Foundation: Apache CloudStack Open Source Cloud Computing. https://cloudstack.apache.org/

  43. 43.

    The Network Simulator—ns-2. http://www.isi.edu/nsnam/ns/

  44. 44.

    The Network Simulator—ns-3. https://www.nsnam.org/

  45. 45.

    Vaquero, L.M., Rodero-Merino, L., Buyya, R.: Dynamically scaling applications in the cloud. SIGCOMM Comput. Commun. Rev. 41(1), 45–52 (2011). https://doi.org/10.1145/1925861.1925869

    Article  Google Scholar 

  46. 46.

    Vaquero, L.M., Rodero-Merino, L., Buyya, R.: Cloud scalability: building the millennium falcon. Concurr. Comput. 25(12), 1623–1627 (2013). https://doi.org/10.1002/cpe.3008

    Article  Google Scholar 

  47. 47.

    Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the clouds: towards a cloud definition. SIGCOMM Comput. Commun. Rev. 39(1), 50–55 (2008). https://doi.org/10.1145/1496091.1496100

    Article  Google Scholar 

  48. 48.

    Vinoski, S.: REST eye for the SOA guy. IEEE Internet Comput. 11(1), 82–84 (2007). https://doi.org/10.1109/MIC.2007.22

    Article  Google Scholar 

  49. 49.

    Wang, A., Jiang, W.: Teaching wireless local area network course based on ns-3. In: International Symposium on Computer Network and Multimedia Technology, pp. 1–4 (2009). https://doi.org/10.1109/CNMT.2009.5374600

  50. 50.

    Wang, S.Y., Lin, C.C., Tzeng, Y.S., Huang, W.G., Ho, T.W.: Exploiting event-level parallelism for parallel network simulation on multicore systems. IEEE Trans. Parallel Distrib. Syst. 23(4), 659–667 (2012). https://doi.org/10.1109/TPDS.2011.215

    Article  Google Scholar 

  51. 51.

    Weingartner, E., vom Lehn, H., Wehrle, K.: A performance comparison of recent network simulators. In: IEEE International Conference on Communications, pp. 1–5 (2009). https://doi.org/10.1109/ICC.2009.5198657

  52. 52.

    Zehe, D., Knoll, A., Cai, W., Aydt, H.: Semsim cloud service: large-scale urban systems simulation in the cloud. Simul. Modell. Pract. Theory 58, 157–171 (2015). https://doi.org/10.1016/j.simpat.2015.05.005

    Article  Google Scholar 

  53. 53.

    Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research challenges. J. Internet Serv. Appl. 1(1), 7–18 (2010). https://doi.org/10.1007/s13174-010-0007-6

    Article  Google Scholar 

  54. 54.

    Zhou, X., Tian, H.: Comparison on network simulation techniques. In: International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), pp. 313–316 (2016). https://doi.org/10.1109/PDCAT.2016.073

Download references


This work has been partially funded by the Spanish State Research Agency and the European Regional Development Fund (Grants TIN2014-53199-C3-2-R and TIN2017-85179-C3-2-R) and the Regional Government of Castilla y León (Grant VA082U16, co-financed by the European Regional Development Fund)

Author information



Corresponding author

Correspondence to Eduardo Gómez-Sánchez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Serrano-Iglesias, S., Gómez-Sánchez, E., Bote-Lorenzo, M.L. et al. A self-scalable distributed network simulation environment based on cloud computing. Cluster Comput 21, 1899–1915 (2018). https://doi.org/10.1007/s10586-018-2816-5

Download citation


  • Computer networks simulation
  • Automatic scalability
  • Cloud computing applications