Skip to main content
Log in

A new MapReduce associative classifier based on a new storage format for large-scale imbalanced data

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The process of knowledge discovery from big and high dimensional datasets has become a popular research topic. The classification problem is a key task in bioinformatics, business intelligence, decision science, astronomy, physics, etc. Building associative classifiers has been a notable research interest in recent years because of their superior accuracy. In associative classifiers, using under-sampling or over-sampling methods for imbalanced big datasets reduces accuracy or increases running time, respectively. Hence, there is a significant need to create efficient associative classifiers for imbalanced big data problems. These classifiers should be able to handle challenges such as memory usage, running time and efficiently exploring the search space. To this end, efficient calculation of measures is a primary objective for associative classifiers. In this paper, we propose a new efficient associative classifier for big imbalanced datasets. The proposed method is based on Rare-PEARs (a multi-objective evolutionary algorithm that efficiently discovers rare and reliable association rules) and is able to evaluate rules in a distributed manner by using a new storing data format. This format simplifies measures calculation and is fully compatible with the MapReduce programming model. We have applied the proposed method (RPII) on a well-known big dataset (ECBDL’14) and have compared our results with seven other learning methods. The experimental results show that RPII outperform other methods in sensitivity and final score measures (the values of sensitivity and final score measures were approximately 0.74 and 0.54 respectively). The results demonstrate that the proposed method is a good candidate for large-scale classification problems; furthermore, it achieves reasonable execution time when the target platform is a typical computer clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. http://bioinformatics.oxfordjournals.org/content/28/19/2441.

References

  1. Xu, Q., Wang Z., Wang, F., Li J.: Thermal comfort research on human CT data modeling. Multimed. Tools Appl. 1–6 (2017)

  2. Yang, J., Li, J., Liu, S.: A new algorithm of stock data mining in Internet of Multimedia Things. J. Supercomput. 1–6 (2017)

  3. Li, G., Zhang, Z., Wang, L., Chen, Q., Pan, J.: One-class collaborative filtering based on rating prediction and ranking prediction. Knowl.-Based Syst. 124, 46–54 (2017)

    Article  Google Scholar 

  4. Li, G., Ou, W.: Pairwise probabilistic matrix factorization for implicit feedback collaborative filtering. Neurocomputing 204, 17–25 (2016)

    Article  Google Scholar 

  5. Yang, J., Li, J., Liu, S.: A novel technique applied to the economic investigation of recommender system. Multimed. Tools Appl. 1–6 (2017)

  6. Xu, Q., Wu, J., Chen, Q.: A novel mobile personalized recommended method based on money flow model for stock exchange. Math. Prob. Eng. (2014)

  7. Xu, Q.: A novel machine learning strategy based on two-dimensional numerical models in financial engineering. Math. Prob. Eng. (2013)

  8. Corbellini, A., Godoy, D., Mateos, C., Schiaffino, S., Zunino, A.: DPM: a novel distributed large-scale social graph processing framework for link prediction algorithms. Future Gener. Comput. Syst. 78, 474–480 (2018)

    Article  Google Scholar 

  9. Corbellini, A., Mateos, C., Godoy, D., Zunino, A., Schiaffino, S.: An architecture and platform for developing distributed recommendation algorithms on large-scale social networks. J. Inf. Sci. 41(5), 686–704 (2015)

    Article  Google Scholar 

  10. Samovsky, M., Kacur, T.: Cloud-based classification of text documents using the Gridgain platform. In: 2012 7th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI), 2012 May 24, pp. 241–245 (2012)

  11. Christopher, M.B.: Pattern Recognition and Machine Learning. Springer, New York (2016)

    Google Scholar 

  12. Wedyan, S.: Review and comparison of associative classification data mining approaches. Int. J. Comput. Inf. Syst. Control Eng. 8(1), 34–45 (2014)

    Google Scholar 

  13. Nguyen, L.T., Vo, B., Hong, T.P., Thanh, H.C.: CAR-Miner: an efficient algorithm for mining class-association rules. Expert Syst. Appl. 40(6), 2305–2311 (2013)

    Article  Google Scholar 

  14. Sun, Y., Wang, Y., Wong, A.K.: Boosting an associative classifier. IEEE Trans. Knowl. Data Eng. 18(7), 988–992 (2006)

    Article  Google Scholar 

  15. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2016)

    Google Scholar 

  16. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. InAcm sigmod Record 22(2), 207–216. ACM (1993)

  17. Mahafzah, B.A., Al-Badarneh, A.F., Zakaria, M.Z.: A new sampling technique for association rule mining. J. Inf. Sci. 35(3), 358–376 (2009)

    Article  Google Scholar 

  18. Bechini, A., Marcelloni, F., Segatori, A.: A MapReduce solution for associative classification of big data. Inf. Sci. 332, 33–55 (2016)

    Article  Google Scholar 

  19. Thabtah, F.: A review of associative classification mining. Knowl. Eng. Rev. 22(1), 37–65 (2007)

    Article  Google Scholar 

  20. Almasi, M., Abadeh, M.S.: Rare-PEARs: a new multi objective evolutionary algorithm to mine rare and non-redundant quantitative association rules. Knowl.-Based Syst. 89, 366–384 (2015)

    Article  Google Scholar 

  21. Krishnamoorthy, S., Sadasivam, G.S., Rajalakshmi, M., Kowsalyaa, K., Dhivya, M.: Privacy Preserving Fuzzy Association Rule Mining in Data Clusters Using Particle Swarm Optimization. Int. J. Intell. Inf. Technol. (IJIIT) 13(2), 1–20 (2017)

    Article  Google Scholar 

  22. Martín, D., Alcalá-Fdez, J., Rosete, A., Herrera, F.: NICGAR: a Niching Genetic Algorithm to mine a diverse set of interesting quantitative association rules. Inf. Sci. 355, 208–228 (2016)

    Article  Google Scholar 

  23. Ma, B.L., Liu, B.: Integrating classification and association rule mining. In: Proceedings of the fourth international conference on knowledge discovery and data mining (1998)

  24. Li, W., Han, J., Pei, J.: CMAR: Accurate and efficient classification based on multiple class-association rules. InData Mining, 2001. ICDM 2001, Proceedings IEEE International Conference on 2001, pp. 369–376 (2001)

  25. Baralis, E., Chiusano, S., Garza, P.: A lazy approach to associative classification. IEEE Trans. Knowl. Data Eng. 20(2):156–171 (2008)

    Article  Google Scholar 

  26. Fan, W., Bifet, A.: Mining big data: current status, and forecast to the future. ACM sIGKDD Explor. Newsl. 14(2), 1–5 (2013)

    Article  Google Scholar 

  27. Luna, J.M., Cano, A., Pechenizkiy, M.: Ventura S.: Speeding-up association rule mining with inverted index compression. IEEE Trans. Cybernet. 46(12), 3059–3072 (2016)

    Article  Google Scholar 

  28. White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Inc., Sebastopol (2012)

  29. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S.: Stoica, I: spark: cluster computing with working sets. HotCloud 10(10–10), 95 (2010)

    Google Scholar 

  30. Shanahan, J.G., Dai, L.: Large scale distributed data science using apache spark. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2015 Aug 10, pp. 2323–2324. ACM (2015)

  31. Landset, S., Khoshgoftaar, T.M., Richter, A.N., Hasanin, T.: A survey of open source tools for machine learning with big data in the Hadoop ecosystem. J. Big Data. 2(1), 24 (2015)

    Article  Google Scholar 

  32. Pentreath, N.: Machine Learning with Spark. Packt Publishing Ltd, Birmingham (2015)

  33. http://cruncher.ncl.ac.uk/bdcomp/TrainingSet.arff.gz and http://cruncher.ncl.ac.uk/bdcomp/TestSet.arff.gz and http://cruncher.ncl.ac.uk/bdcomp

  34. Triguero, I:, del Río, S., López, V., Bacardit, J., Benítez, J.M., Herrera, F.: ROSEFW-RF: the winner algorithm for the ECBDL’14 big data competition: an extremely imbalanced big data bioinformatics problem. Knowl.-Based Syst. 87:69–79 (2015)

    Article  Google Scholar 

  35. http://cruncher.ncl.ac.uk/bdcomp/BDCOMP-final.pdf

  36. Thusoo, A., Shao, Z., Anthony, S., Borthakur, D., Jain, N., Sen Sarma, J., Murthy, R., Liu, H.: Data warehousing and analytics infrastructure at facebook. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of data, 2010 Jun 6, pp. 1013–1020. ACM (2010)

  37. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  38. Fei, X., Li, X., Shen, C.: Parallelized text classification algorithm for processing large scale TCM clinical data with MapReduce. In: Information and Automation, 2015 IEEE International Conference, 1983–1986. IEEE (2015)

  39. Qasem, M.H., Sarhan, A.A., Qaddoura, R., Mahafzah, B.A.: Matrix multiplication of big data using mapreduce: a review. In: Proceedings of the 2nd International Conference on the Applications of Information Technology in Developing Renewable Energy Processes and Systems (IT-DREPS 2017), University of Petra, Amman, Jordan, 52-57, (2017)

  40. Maillo, J., Ramírez, S., Triguero, I., Herrera, F.: kNN-IS: an iterative spark-based design of the k-nearest neighbors classifier for big data. Knowl.-Based Syst. 117, 3–15 (2017)

    Article  Google Scholar 

  41. Perera, S.: Hadoop MapReduce Cookbook. Packt Publishing Ltd, Birmingham (2013)

  42. Lin, D.I., Kedem, Z.M.: Pincer-search: an efficient algorithm for discovering the maximum frequent set. IEEE Trans. Knowl. Data Eng. 14(3), 553–566 (2002)

    Article  Google Scholar 

  43. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. InACM Sigmod Record 2000, 29(2), 1–12 (2000)

    Article  Google Scholar 

  44. Savasere, A., Omiecinski, ER., Navathe, SB.: An efficient algorithm for mining association rules in large databases. Georgia Institute of Technology, Georgia (1995)

  45. Ghosh, A., Nath, B.: Multi-objective rule mining using genetic algorithms. Inf. Sci. 163(1), 123–133 (2004)

    Article  MathSciNet  Google Scholar 

  46. Kuo, R.J., Shih, C.W.: Association rule mining through the ant colony system for National Health Insurance Research Database in Taiwan. Comput. Math. Appl. 54(11), 1303–1318 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Sarath, K.N., Ravi, V.: Association rule mining using binary particle swarm optimization. Eng. Appl. Artif. Intell. 26(8), 1832–1840 (2013)

    Article  Google Scholar 

  48. Kuo, R.J., Chao, C.M., Chiu, Y.T.: Application of particle swarm optimization to association rule mining. Appl. Soft Comput. 11(1), 326–336 (2011)

    Article  Google Scholar 

  49. Martín, D., Rosete, A., Alcalá-Fdez, J., Herrera, F.: QAR-CIP-NSGA-II: a new multi-objective evolutionary algorithm to mine quantitative association rules. Inf. Sci. 258, 1–28 (2014)

    Article  MathSciNet  Google Scholar 

  50. Mata, J., Alvarez, J.L., Riquelme, J.C.: Mining numeric association rules with genetic algorithms. In: Smith, G. (ed.), Artificial Neural Nets and Genetic Algorithms. Springer, Vienna, pp. 264–267 (2001)

    Chapter  MATH  Google Scholar 

  51. Yan, X., Zhang, C., Zhang, S.: Genetic algorithm-based strategy for identifying association rules without specifying actual minimum support. Expert Syst. Appl. 36(2), 3066–3076 (2009)

    Article  Google Scholar 

  52. Alatas, B., Akin, E., Karci, A.: MODENAR: multi-objective differential evolution algorithm for mining numeric association rules. Appl. Soft Comput. 8(1), 646–656 (2008)

    Article  Google Scholar 

  53. Qodmanan, H.R., Nasiri, M., Minaei-Bidgoli, B.: Multi objective association rule mining with genetic algorithm without specifying minimum support and minimum confidence. Expert Syst. Appl. 38(1), 288–298 (2011)

    Article  Google Scholar 

  54. Ramaswamy, S., Mahajan, S., Silberschatz, A.: On the discovery of interesting patterns in association rules. InVLDB 98, 368–379 (1998)

    Google Scholar 

  55. Djenouri, Y., Djenouri, D., Habbas, Z., Belhadi, A.: How to exploit high performance computing in population-based metaheuristics for solving association rule mining problem. Distrib. Parallel Databases 1–29 (2018)

  56. Segatori, A., Bechini, A., Ducange, P., Marcelloni, F.: A distributed fuzzy associative classifier for big data. IEEE Trans. Cybernet. (2017)

  57. Venturini, L., Baralis, E., Garza, P.: Scaling associative classification for very large datasets. J. Big Data 4(1), 44 (2017)

    Article  Google Scholar 

  58. Yu, P., Wild, D.J.: Discovering associations in biomedical datasets by link-based associative classifier (LAC). PLoS ONE 7(12), e51018 (2012)

    Article  Google Scholar 

  59. Uriarte-Arcia, A.V., López-Yáñez, I., Yáñez-Márquez, C.: One-hot vector hybrid associative classifier for medical data classification. PLoS ONE 9(4), e95715 (2014)

    Article  Google Scholar 

  60. Yoon, Y., Lee, G.G.: Two scalable algorithms for associative text classification. Inf. Proc. Manag. 49(2), 484–496 (2013)

    Article  Google Scholar 

  61. Costa, G., Ortale, R., Ritacco, E.: X-class: associative classification of xml documents by structure. ACM Trans. Inf. Syst. (TOIS) 31(1), 3 (2013)

    Article  Google Scholar 

  62. Ajlouni, M.D., Hadi, W.E., Alwedyan, J.: Detecting phishing websites using associative classification. Image 5(23), 36–40 (2013)

  63. Wang, C., Hu, L., Guo, M., Liu, X., Zou, Q.: imDC: an ensemble learning method for imbalanced classification with miRNA data. Genet. Mol. Res. 14(1), 123–133 (2015)

    Article  Google Scholar 

  64. Liu, Y., Zhang, J., Li, A., Zhang, Y., Li, Y., Yuan, X., He, Z., Liu, Z., Tuo, S.: Identification of PIWI-interacting RNA modules by weighted correlation network analysis. Clust. Comput. 1–1 (2017)

  65. Bacardit, J., Widera, P., Márquez-Chamorro, A., Divina, F., Aguilar-Ruiz, J.S., Krasnogor, N.: Contact map prediction using a large-scale ensemble of rule sets and the fusion of multiple predicted structural features. Bioinformatics 28(19), 2441–2448 (2012)

    Article  Google Scholar 

  66. Mahafzah, B.A., Jaradat, B.A.: The hybrid dynamic parallel scheduling algorithm for load balancing on chained-cubic tree interconnection networks. J. Supercomput. 52(3), 224–252 (2010)

    Article  Google Scholar 

  67. Mahafzah, B.A., Jaradat, B.A.: The load balancing problem in OTIS-Hypercube interconnection networks. J. Supercomput. 46(3), 276–297 (2008)

    Article  Google Scholar 

  68. https://moa.cms.waikato.ac.nz/overview/ a Hadoop-powered Weka implementation

  69. Sun, Y., Wong, A.K., Kamel, M.S.: Classification of imbalanced data: a review. Int. J. Pattern Recog. Artif. Intell. 23(04), 687–719 (2009)

    Article  Google Scholar 

  70. Han, L., Ong, H.Y.: Parallel data intensive applications using MapReduce: a data mining case study in biomedical sciences. Clust. Comput. 18(1), 403–418 (2015)

    Article  Google Scholar 

  71. Park, B.J., Oh, S.K., Pedrycz, W.: The design of polynomial function-based neural network predictors for detection of software defects. Inf. Sci. 229, 40–57 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  72. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  MATH  Google Scholar 

  73. Rodríguez-Mazahua, L., Rodríguez-Enríquez, C.A., Sánchez-Cervantes, J.L., Cervantes, J., García-Alcaraz, J.L., Alor-Hernández, G.: A general perspective of Big Data: applications, tools, challenges and trends. J. Supercomput. 72(8), 3073–3113 (2016)

    Article  Google Scholar 

  74. Lee, J., Lapira, E., Bagheri, B., Kao, H.A.: Recent advances and trends in predictive manufacturing systems in big data environment. Manuf. Lett. 1(1), 38–41 (2013)

    Article  Google Scholar 

  75. Costa, F.F.: Big data in biomedicine. Drug Discov. Today 19(4), 433–440 (2014)

    Article  Google Scholar 

  76. Xu, Q., Li, M.: A new cluster computing technique for social media data analysis. Clust. Comput. 1–8 (2017)

  77. Garcı, S., Triguero, I., Carmona, C.J., Herrera, F.: Evolutionary-based selection of generalized instances for imbalanced classification. Knowl.-Based Syst. 25(1), 3–12 (2012)

    Article  Google Scholar 

  78. García, S., Herrera, F.: Evolutionary undersampling for classification with imbalanced datasets: proposals and taxonomy. Evol. Comput. 17(3), 275–306 (2009)

    Article  MathSciNet  Google Scholar 

  79. Idris, A., Iftikhar, A., ur Rehman, Z.: Intelligent churn prediction for telecom using GP-AdaBoost learning and PSO undersampling. Clust. Comput. 1–5 (2017)

  80. Batista, G.E., Prati, R.C., Monard, M.C.: A study of the behavior of several methods for balancing machine learning training data. ACM Sigkdd Explor. Newsl. 6(1), 20–29 (2004)

    Article  Google Scholar 

  81. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  82. Del Río, S., López, V., Benítez, J.M., Herrera, F.: On the use of MapReduce for imbalanced big data using Random Forest. Inf. Sci. 285, 112–137 (2014)

    Article  Google Scholar 

  83. LóPez, V., FernáNdez, A., Del Jesus, M.J., Herrera, F.: A hierarchical genetic fuzzy system based on genetic programming for addressing classification with highly imbalanced and borderline data-sets. Knowl.-Based Syst. 38, 85–104 (2013)

    Article  Google Scholar 

  84. Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: one-sided selection. InICML 97, 179–186 (1997)

    Google Scholar 

  85. Corbellini, A., Mateos, C., Zunino, A., Godoy, D., Schiaffino, S.: Persisting big-data: the NoSQL landscape. Inf. Syst. 63, 1–23 (2017)

    Article  Google Scholar 

  86. Berzal, F., Cubero, J.C., Marín, N., Sánchez, D., Serrano, J.M., Vila, A.: Association rule evaluation for classification purposes. Actas del III Taller Nacional de Mineria de Datos y Aprendizaje. 135–44 (2005)

  87. https://www.spss-tutorials.com/spss-independent-samples-t-test/

  88. Ho, T.K., Basu, M.: Complexity measures of supervised classification problems. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 289–300 (2002)

    Article  Google Scholar 

  89. Leyva, E., Gonzalez, A., Perez, R.: A set of complexity measures designed for applying meta-learning to instance selection. IEEE Trans. Knowl. Data Eng. 27(2), 354–367 (2015)

    Article  Google Scholar 

  90. http://sci2s.ugr.es/keel/imbalanced.php?order=insR#sub10

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Saniee Abadeh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 674 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almasi, M., Saniee Abadeh, M. A new MapReduce associative classifier based on a new storage format for large-scale imbalanced data. Cluster Comput 21, 1821–1847 (2018). https://doi.org/10.1007/s10586-018-2812-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-2812-9

Keywords

Navigation