Abstract
In order to accurately diagnose knee osteoarthritis, a detection technique as well as its quantitative assessment based on X-ray image processing is proposed in this study. First, image segmentation is implemented on the basis of maximum between-class variance and region growing method. Second, the edge of the image concerned is filled based on calculations of mathematical morphology, followed by edge extraction, which realizes extraction of the image in the region of interest. Finally, processing and judgment concerning four indicators to determine knee osteoarthritis, namely, joint space asymmetry, articular sclerosis, rugged articular surface, and intra-articular loose bodies, were judged and judged. Our experimental results show that this technique can effectively detect and describe the features of knee osteoarthritis, which can be used as a tool for clinical diagnosis.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Jiang, Y., Hua, Q., Ren, J., Zeng, F., Sheng, J., Liao, H., et al.: Eosinophilic hyperplastic lymphogranuloma: clinical diagnosis and treatment experience of 41 cases. Am. J. Otolaryngol. 38(5), 626 (2017)
Dona, A.C., Coffey, S., Figtree, G.: Translational and emerging clinical applications of metabolomics in cardiovascular disease diagnosis and treatment. Eur. J. Prev. Cardiol. 23(15), 1578–1589 (2016)
Allsop, M.J., Twiddy, M., Grant, H., Czoski-Murray, C., Mon-Williams, M., Mushtaq, F., et al.: Diagnosis, medication, and surgical management for patients with trigeminal neuralgia: a qualitative study. Acta Neurochir. 157(11), 1925–1933 (2015)
Williams, B.T., Ahrberg, A.B., Goldsmith, M.T., Campbell, K.J., Shirley, L., Wijdicks, C.A., et al.: Ankle syndesmosis: a qualitative and quantitative anatomic analysis. Am. J. Sports Med. 43(1), 88–97 (2015)
De, G.A., Watson, S., Ellis, L.M., Rodón, J., Tabernero, J., De, G.A., et al.: Pragmatic issues in biomarker evaluation for targeted therapies in cancer. Nat. Rev. Clin. Oncol. 12(4), 197–212 (2015)
Krych, A.J., Sousa, P.L., King, A.H., Engasser, W.M., Stuart, M.J., Levy, B.A.: Meniscal tears and articular cartilage damage in the dislocated knee. Knee Surg. Sports Traumatol. Arthrosc. 23(10), 3019–3025 (2015)
Hassan, E.B., Mirams, M., Ghasemzadeh, A., Mackie, E.J., Whitton, R.C.: Role of subchondral bone remodelling in collapse of the articular surface of thoroughbred racehorses with palmar osteochondral disease. Equine Vet. J. 48(2), 228 (2016)
Thijssen, E., Van, C.A., Pm, V.D.K.: Obesity and osteoarthritis, more than just wear and tear: pivotal roles for inflamed adipose tissue and dyslipidaemia in obesity-induced osteoarthritis. Rheumatology. 54(4), 588 (2015)
Horváth, Ádám, Tékus, V., Boros, M., Pozsgai, G., Botz, B., Borbély, Éva, et al.: Transient receptor potential ankyrin 1 (TRPA1) receptor is involved in chronic arthritis: in vivo study using TRPA1-deficient mice. Arthritis Res. Ther. 18(1), 6 (2016)
Shah, F.A., Palmquist, A.: Evidence that osteocytes in autogenous bone fragments can repair disrupted canalicular networks and connect with osteocytes in de novo, formed bone on the fragment surface. Calcif. Tissue Int. 101(3), 321–327 (2017)
Endrizzi, M., Basta, D., Olivo, A.: Laboratory-based X-ray phase-contrast imaging with misaligned optical elements. Appl. Phys. Lett. 107(12), 23–26 (2015)
Sarapata, A., Fingerle, A., Braun, C., Pfeiffer, F., Herzen, J., Kaiser, K., et al.: Quantitative imaging using high-energy X-ray phase-contrast CT with a 70 kVp polychromatic X-ray spectrum. Opt. Express. 23(1), 523 (2015)
Zhang, J., Zhou, G., Tian, D., Lin, R., Peng, G., Su, M.: Microdissection of human esophagogastric junction wall with phase-contrast X-ray CT imaging. Sci. Rep. 5(5), 13831 (2015)
Chuklin, P., Chalermpanapan, V., Nookeaw, T., Saithong, S., Chainok, K., Phongpaichit, S., et al.: Synthesis, X-ray structure of organometallic ruthenium (II) p-cymene complexes based on P- and N-donor ligands and their in vitro antibacterial and anticancer studies. J. Organomet. Chem. 846, 242–250 (2017)
Li, K., Etschmann, B., Rae, N., Reith, F., Ryan, C.G., Kirkham, R., et al.: Ore petrography using megapixel X-ray imaging: rapid insights into element distribution and mobilization in complex Pt and U-Ge-Cu ores. Econ. Geol. 111(2), 487–501 (2016)
Shen, J., Chen, P., Su, L., Shi, T., Tang, Z., Liao, G.: X-ray inspection of TSV defects with self-organizing map network and Otsu algorithm. Microelectron. Reliab. 67, 129–134 (2016)
Begelman, M.C., Armitage, P.J., Reynolds, C.S.: Accretion disk dynamo as the trigger for X-ray binary state transitions. Astrophys. J. 809(2), 118 (2015)
Churazov, E., Vikhlinin, A., Sunyaev, R.: (No) dimming of X-ray clusters beyond z ~ 1 at fixed mass: crude redshifts and masses from raw X-ray and SZ data. Mon. Not. R. Astron. Soc. 450(2), 1984–1989 (2015)
Zhuge, X., Palenstijn, W.J., Batenburg, K.J.: TVR-DART: a more robust algorithm for discrete tomography from limited projection data with automated gray value estimation. IEEE Trans. Image Process. 25(1), 455–468 (2015)
Chies, L.A.S., Rodr, B.P.D.G., Arag, A.S.N., Bamford, P.S., Gray, E.M., Wolf, C., et al.: OMEGA–OSIRIS mapping of emission-line galaxies in A901/2–I. Survey description, data analysis, and star formation and AGN activity in the highest density regions. Mon. Not. R. Astron. Soc. 450(4), 4458 (2015)
Banerjee, S., Mitra, S., Shankar, B.U.: Single seed delineation of brain tumor using multi-thresholding. Inf. Sci. 330(C), 88–103 (2016)
Lehermeier, C., Teyssèdre, S., Schön, C.C.: Genetic gain increases by applying the usefulness criterion with improved variance prediction in selection of crosses. Genetics. 207(4), 1651 (2017)
Malek, A.A., Wan, E.Z.W.A.R., Ibrahim, A., Mahmud, R., Yasiran, S.S., Jumaat, A.K.: Region and boundary segmentation of microcalcifications using seed-based region growing and mathematical morphology. Proc. Soc. Behav. Sci. 8(1), 634–639 (2010)
Kanopoulos, N., Vasanthavada, N., Baker, R.L.: Design of an image edge detection filter using the sobel operator. IEEE J. Solid-State Circuits. 23(2), 358–367 (2002)
Liao, T., Li, X., Xu, G., Zhang, Y.J.: Secondary laplace operator and generalized Giaquinta–Hildebrandt operator with applications on surface segmentation and smoothing. Comput. Aided Des. 70(C), 56–66 (2016)
Zheng, Y., Zhou, Y., Zhou, H., Gong, X.: Ultrasound image edge detection based on a novel multiplicative gradient and canny operator. Ultrason. Imaging. 37(3), 238–250 (2015)
Yoshimoto, H.: Image processing apparatus, display apparatus, and image processing method. J. Oral Rehabil. 98(1), 231–233 (2014)
Qin, H.B., Zhu, J.M., Lin, Z.Q., Xu, W.P., Tan, D.C., Zheng, L.R., et al.: Selenium speciation in seleniferous agricultural soils under different cropping systems using sequential extraction and X-ray absorption spectroscopy. Environ. Pollut. 225, 361–369 (2017)
Buchmueller, O., Dolan, M.J., Malik, S.A., Mccabe, C.: Characterising dark matter searches at colliders and direct detection experiments: vector mediators. J. High Energy Phys. 2015(1), 37 (2015)
Chen, Y., Guan, G., Matsushita, S., Li, X.: Robust stochastic gradient-based adaptive filtering algorithms to realize compressive sensing against impulsive interferences. In: Control and Decision Conference. IEEE (2016)
Schawaller, M., Schenck, K., Hoffmeister, S.A., Schaller, H., Schaller, H.C.: On the convergence of alternating direction Lagrangian methods for nonconvex structured optimization problems. IEEE Trans. Control Netw. Syst. 3(3), 296–309 (2016)
Neacsiu, A.D., Wardciesielski, E.F., Linehan, M.M.: Emerging approaches to counseling intervention: dialectical behavior therapy. Couns. Psychol. 40(7), 1003–1032 (2016)
Zhang, T., Yang, X., Hu, S., Su, F.: Extraction of coastline in aquaculture coast from multispectral remote sensing images: object-based region growing integrating edge detection. Remote Sens. 5(9), 4470–4487 (2013)
Pantic, I., Nesic, Z., Pantic, J.P., Radojevićškodrić, S., Cetkovic, M., Jovanovic, G.B.: Fractal analysis and gray level co-occurrence matrix method for evaluation of reperfusion injury in kidney medulla. J. Theor. Biol. 397(2), 61–67 (2016)
Fujita, A., Buch, K., Li, B., Kawashima, Y., Qureshi, M.M., Sakai, O.: Difference between HPV-positive and HPV-negative non-oropharyngeal head and neck cancer: texture analysis features on CT. J. Comput. Assist. Tomogr. 40(1), 43 (2016)
Roach, B.L., Hung, C.T., Cook, J.L., Ateshian, G.A., Tan, A.R.: Fabrication of tissue engineered osteochondral grafts for restoring the articular surface of diarthrodial joints. Methods. 84, 103–108 (2015)
Dibbern, K., Kempton, L.B., Higgins, T.F., Morshed, S., Mckinley, T.O., Marsh, J.L., et al.: Fractures of the tibial plateau involve similar energies as the tibial pilon but greater articular surface involvement. J. Orthop. Res. 35(3), 618–624 (2017)
Cigan, A.D., Durney, K.M., Nims, R.J., Vunjaknovakovic, G., Hung, C.T., Ateshian, G.A.: Nutrient channels aid the growth of articular surface-sized engineered cartilage constructs. Tissue Eng. Part A. 22(17), 1063–1074 (2016)
Wu, T., Wu, H., Du, Y., Kwok, N., Peng, Z.: Imaged wear debris separation for on-line monitoring using gray level and integrated morphological features. Wear. 316(1–2), 19–29 (2014)
Skoura, A., Nuzhnaya, T., Megalooikonomou, V.: Integrating edge detection and fuzzy connectedness for automated segmentation of anatomical branching structures. Int. J. Bioinf. Res. Appl. 10(1), 93–109 (2014)
Varga, B., Karacs, K.: Towards a balanced trade-off between speed and accuracy in unsupervised data-driven image segmentation. Mach. Vis. Appl. 24(6), 1267–1294 (2013)
Javadi, M., Azar, S. M., Azami, S., Ghidary, S.S., Sadeghnejad, S., Baltes, J.: Humanoid robot detection using deep learning: a speed-accuracy tradeoff. In: The Robocup International Symposium (2017)
Michetti, J., Georgelin-Gurgel, M., Mallet, J.P., Diemer, F., Boulanouar, K.: Influence of cone beam CT parameters on the output of an automatic edge-detection based endodontic segmentation. Dentomaxillofac. Radiol. 44(8), 20140413 (2015)
Cheung, Y.M., Li, M., Cao, X., You, X.: Lip segmentation under map-MRF framework with automatic selection of local observation scale and number of segments. IEEE Trans. Image Process. 23(8), 3397–3411 (2014)
Chen, R., Xu, J., Chen, H., Su, J., Zhang, Z., Chen, K.: Accurate calibration method for camera and projector in fringe patterns measurement system. Appl. Opt. 55(16), 4293 (2016)
Archibald, R., Hu, J., Gelb, A., Farin, G.: Improving the accuracy of volumetric segmentation using pre-processing boundary detection and image reconstruction. IEEE Trans. Image Process. 13(4), 459–466 (2004)
Schorsch, S., Hours, J.H., Vetter, T., Mazzotti, M., Jones, C.N.: An optimization-based approach to extract faceted crystal shapes from stereoscopic images. Comput. Chem. Eng. 75, 171–183 (2015)
Gain, A.L., Carroll, J., Paulino, G.H., Lambros, J.: A hybrid experimental/numerical technique to extract cohesive fracture properties for mode-I fracture of quasi-brittle materials. Int. J. Fract. 169(2), 113–131 (2015)
Wang, Q., Niemi, J., Tan, C.M., You, L., West, M.: Image segmentation and dynamic lineage analysis in single-cell fluorescence microscopy. Cytom. Part A. 77A(1), 101–110 (2010)
Merazi-Meksen, T., Boudraa, M., Boudraa, B.: Mathematical morphology for TOFD image analysis and automatic crack detection. Ultrasonics. 54(6), 1642–1648 (2014)
Matsukuma, S., Takeo, H., Okada, K., Sato, K.: Fatty lesions in intra-articular loose bodies: a histopathological study of non-primary synovial chondromatosis cases. Virchows Arch. 460(1), 103–108 (2012)
Petit, A., Redout, E.M., Ch, V.D.L., de Grauw, J.C., Müller, B., Meyboom, R., et al.: Sustained intra-articular release of celecoxib from in situ forming gels made of acetyl-capped PCLA-PEG-PCLA triblock copolymers in horses. Biomaterials. 53, 426–436 (2015)
Yamazaki, H., Uchiyama, S., Komatsu, M., Hashimoto, S., Kobayashi, Y., Sakurai, T., et al.: Arthroscopic assistance does not improve the functional or radiographic outcome of unstable intra-articular distal radial fractures treated with a volar locking plate: a randomised controlled trial. Bone Joint J. 97-B(7), 957 (2015)
Li, X., Yu, S., Hui, C., Zhu, G., Yuan, L., Qiang, W., et al.: Hydroxycamptothecin induces apoptosis of fibroblasts and prevents intraarticular scar adhesion in rabbits by activating the IRE-1 signal pathway. Eur. J. Pharmacol. 781, 139–147 (2016)
Nishino, K., Omori, G., Koga, Y., Kobayashi, K., Sakamoto, M., Tanabe, Y., et al.: Three-dimensional dynamic analysis of knee joint during gait in medial knee osteoarthritis using loading axis of knee. Gait Posture. 42(2), 127 (2015)
Acknowledgements
The project is funded by Zhejiang Science and Technology Department Public Welfare Project (Grant: 2017C35001) and Ningbo Municipal Bureau of Science and Technology Project (Grants: 2017A10027, 2017C50023, 2016C10056).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, Y., Xu, N. & Lyu, Q. Construction of a knee osteoarthritis diagnostic system based on X-ray image processing. Cluster Comput 22 (Suppl 6), 15533–15540 (2019). https://doi.org/10.1007/s10586-018-2677-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10586-018-2677-y