Advertisement

Bilevel mixed-integer nonlinear programming for integrated scheduling in a supply chain network

  • Jianchao Yang
  • Feng Guo
  • Li Luo
  • Xiaoming Ye
Article

Abstract

An integrated scheduling problem under a make-to-order supply chain network is addressed. This problem considers integrated production and transportation scheduling with realistic supply chain features such as unrelated parallel shop and product batch-based transportation. The mathematical model for this problem is presented, which is formulated as a bilevel mixed-integer nonlinear program. A novel bilevel evolutionary optimization model based on memetic algorithm is proposed to resolve this problem because the problem is hard-to-tackle for mathematical programming techniques and traditional intelligent techniques. The effectiveness of the proposed optimization model is validated through a series of numerical experiments. The experimental results also confirmed that the proposed optimization model is superior to other three intelligent optimization models.

Keywords

Make-to-order supply chain scheduling Mixed integer nonlinear programming Bilevel programming Memetic algorithm Bilevel evolutionary algorithms 

Notes

Acknowledgements

This paper is supported partly by the National Natural Science Foundation of China under Grant Nos. 71532007, 71131006 and 71172197.

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

References

  1. 1.
    Armentano, V., Shiguemoto, A., Lokketangen, A.: Tabu search with path relinking for an integrated production-distribution problem. Comput. Oper. Res. 38(8), 1199–1209 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Averbakh, I.: On-line integrated production-distribution scheduling problems with capacitated deliveries. Eur. J. Oper. Res. 200(2), 377–384 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bard, J., Nananukul, N.: The integrated production-inventory-distribution-routing problem. J. Sched. 12(3), 257–280 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ben-Ayed, O., Blair, C.: Computational difficulties of bilevel linear programming. Oper. Res. 38(3), 556–560 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Beyer, H.-G., Schwefel, H.-P.: Evolution strategies: a comprehensive introduction. J. Nat. Comput. 1(1), 3–52 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bilgen, B., Celebi, Y.: Integrated production scheduling and distribution planning in dairy supply chain by hybrid modelling. Ann. Oper. Res. 211(1), 55–82 (2013)CrossRefzbMATHGoogle Scholar
  7. 7.
    Cakici, E., Mason, S., Kurz, M.: Multi-objective analysis of an integrated supply chain scheduling problem. Int. J. Prod. Res. 50(10), 2624–2638 (2012)CrossRefGoogle Scholar
  8. 8.
    Cattaruzza, D., Absi, N., Feillet, D., Vidal, T.: A memetic algorithm for the multi-trip vehicle routing problem. Eur. J. Oper. Res. 236(3), 833–848 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chen, Z.: Integrated production and outbound distribution scheduling: review and extensions. Oper. Res. 58(1), 130–148 (2010)CrossRefzbMATHGoogle Scholar
  10. 10.
    Chen, Z., Vairaktarakis, G.: Integrated scheduling of production and distribution operations. Manage. Sci. 51(4), 614–628 (2005)CrossRefzbMATHGoogle Scholar
  11. 11.
    Delavar, M., Hajiaghaei-Keshteli, M., Molla-Alizadeh-Zavardehi, S.: Genetic algorithms for coordinated scheduling of production and air transportation. Expert Syst. Appl. 37(12), 8255–8266 (2010)CrossRefGoogle Scholar
  12. 12.
    Divsalar, A., Vansteenwegen, P., Sorensen, K., Cattrysse, D.: A memetic algorithm for the orienteering problem with hotel selection. Eur. J. Oper. Res. 237(1), 29–49 (2014)CrossRefzbMATHGoogle Scholar
  13. 13.
    Fu, F.: Integrated scheduling and batch ordering for construction project. Appl. Math. Model. 38(2), 784–797 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Garcia, J.M., Lozano, S., Canca, D.: Coordinated scheduling of production and delivery from multiple plants. Robot. Comput.-Integr. Manuf. 20(3), 191–198 (2004)CrossRefGoogle Scholar
  15. 15.
    Geem, Z., Kim, J., Loganathan, G.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)CrossRefGoogle Scholar
  16. 16.
    Geismar, H., Laporte, G., Lei, L., Sriskandarajah, C.: The integrated production and transportation scheduling problem for a product with a short lifespan. INFORMS J. Comput. 20(1), 21–33 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Glover, F.: Tabu search-part 1. ORSA J. Comput. 1(2), 190–206 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Guo, Z.X., Wong, W.K., Leung, S.Y.S.: A hybrid intelligent model for order allocation planning in make-to-order manufacturing. Appl. Soft Comput. 13(3), 1376–1390 (2013)CrossRefGoogle Scholar
  19. 19.
    Guo, Z., Zhang, D., Liu, H., He, Z., Shi, L.: Green transportation scheduling with pickup time and transport mode selections using a novel multi-objective memetic optimization approach. Transp. Res. Part D (2016).  https://doi.org/10.1016/j.trd.2016.02.003 Google Scholar
  20. 20.
    Guo, Z.X., Ngai, E.W.T., Yang, C., Liang, X.: An RFID-based intelligent decision support system architecture for production monitoring and scheduling in a distributed manufacturing environment. Int. J. Prod. Econ. 159, 16–28 (2015)CrossRefGoogle Scholar
  21. 21.
    Holland, J.H.: Erratum: genetic algorithms and the optimal allocation of trials. SIAM J. Comput. 2(2), 88–105 (2006)CrossRefzbMATHGoogle Scholar
  22. 22.
    Liu, S., Papageorgiou, L.G.: Multiobjective optimisation of production, distribution and capacity planning of global supply chains in the process industry. OMEGA-Int. J. Manag. Sci. 41(2), 369–382 (2013)CrossRefGoogle Scholar
  23. 23.
    Low, C., Li, R., Chang, C.: Integrated scheduling of production and delivery with time windows. Int. J. Prod. Res. 51(3), 897–909 (2013)CrossRefGoogle Scholar
  24. 24.
    Meisel, F., Kirschstein, T., Bierwirth, C.: Integrated production and intermodal transportation planning in large scale production-distribution-networks. Transp. Res. Part E 60(6), 62–78 (2013)CrossRefGoogle Scholar
  25. 25.
    Michalewicz, Z.: Genetic + data structures = evolution programs. Comput. Stat. Data Anal. 24(3), 372–373 (1999)Google Scholar
  26. 26.
    Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech Concurrent Computation Program (report 826) (1989)Google Scholar
  27. 27.
    Neri, F., Cotta, C.: Memetic algorithms and memetic computing optimization: a literature review. Swarm Evol. Comput. 2(1), 1–14 (2012)CrossRefGoogle Scholar
  28. 28.
    Piewthongngam, K., Pathumnakul, S., Homkhampad, S.: An interactive approach to optimize production-distribution planning for an integrated feed swine company. Int. J. Prod. Econ. 142(2), 290–301 (2013)CrossRefGoogle Scholar
  29. 29.
    Sawik, T.: Monolithic versus hierarchical approach to integrated scheduling in a supply chain. Int. J. Prod. Res. 47(21), 5881–5910 (2009)CrossRefzbMATHGoogle Scholar
  30. 30.
    Selvarajah, E., Zhang, R.: Supply chain scheduling to minimize holding costs with outsourcing. Ann. Oper. Res. 217(1), 479–490 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Steinrucke, M.: An approach to integrate production-transportation planning and scheduling in an aluminium supply chain network. Int. J. Prod. Res. 49(21), 6559–6583 (2011)CrossRefGoogle Scholar
  32. 32.
    Tang, D., Dai, M., Salido, M.A., Giret, A.: Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization. Comput. Ind. 81, 82–95 (2015)CrossRefGoogle Scholar
  33. 33.
    Viergutz, C., Knust, S.: Integrated production and distribution scheduling with lifespan constraints. Ann. Oper. Res. 213(1), 293–318 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Wang, X., Cheng, T.C.E.: Machine scheduling with an availability constraint and job delivery coordination. Naval Res. Logist. 54(1), 11–20 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Xu, X., Zhang, W., Li, N., Xu, H.: A bi-level programming model of resource matching for collaborative logistics network in supply uncertainty environment. J. Frankl. Inst. 352(9), 3873–3884 (2015)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Zegordi, S., Abadi, I., Nia, M.: A novel genetic algorithm for solving production and transportation scheduling in a two-stage supply chain. Comput. Ind. Eng. 58(3), 373–381 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Business SchoolSichuan UniversityChengduChina
  2. 2.College of Computer ScienceSichuan UniversityChengduChina
  3. 3.School of CybersecurityChengdu University of Information TechnologyChengduChina

Personalised recommendations