Advertisement

Reliability-based linear parameter varying robust non-fragile control for hypersonic vehicles with disturbance observer

  • Xing Wei
  • Lei Liu
  • Yongji Wang
Article

Abstract

In this paper, the linear parameter varying (LPV) reliable non-fragile control for the hypersonic vehicle (HV) is studied in case of disturbance and controller gain variations. Due to the dramatic and complex change of the HV longitudinal dynamics, a polytopic LPV model is constructed for the HV system stability analysis and controller design in a large flight envelope. Then, a disturbance observer (DOB)-based non-fragile controller for HV system with disturbance and unknown controller uncertainty is designed to guarantee the closed-loop stability and control performance under an adequate level of reliability, which is formed with two parts. One part is a DOB to compensate the uncertain dynamics and disturbance. The other is a robust non-fragile controller, which is designed based on a novel robust reliability method to deal with controller uncertainties, and obtained by carrying out reliability-based linear matrix inequality optimization. The presented controller for HV can provide the robustness as well as an excellent performance under the condition that the prescribed reliability degree is satisfied. Finally, numerical simulation for an HV demonstrates the effectiveness of the proposed method.

Keywords

Non-fragile control Hypersonic vehicle Robust reliability Disturbance observer Linear parameter varying 

Notes

Acknowledgements

This work was supported in part by the National Nature Science Foundation of China (Grant Nos. 61473124 and 61573161).

Compliance with ethical standards

Conflicts of interest

The author(s) declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

  1. 1.
    Xu, B., Shi, Z.: An overview on flight dynamics and control approaches for hypersonic vehicles. Sci. China Inform. Sci. 58(7), 1–19 (2015)MathSciNetGoogle Scholar
  2. 2.
    Marrison, C.I., Stengel, R.F.: Design of robust control systems for a hypersonic aircraft. J. Guid. Control Dyn. 21(1), 58–63 (1998)CrossRefzbMATHGoogle Scholar
  3. 3.
    Huang, J., Tu, X., He, J.: Design and evaluation of the RUPERT wearable upper extremity exoskeleton robot for clinical and in-home therapies. IEEE Trans. Syst. Man Cybern. Syst. 46(7), 926–935 (2016)CrossRefGoogle Scholar
  4. 4.
    Bolender, M.A., Doman, D.B.: Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle. J. Spacecr. Rockets 44(2), 374–387 (2007)CrossRefGoogle Scholar
  5. 5.
    Parker, J.T., Serrani, A., Yurkovich, S., Bolender, M.A., Doman, D.B.: Control-oriented modeling of an air-breathing hypersonic vehicle. J. Guid. Control Dyn. 30(3), 856–869 (2007)CrossRefGoogle Scholar
  6. 6.
    Buschek, H., Calise, A.J.: Uncertainty modeling and fixed-order controller design for a hypersonic vehicle model. J. Guid. Control Dyn. 20(1), 42–48 (1997)CrossRefzbMATHGoogle Scholar
  7. 7.
    Li, H., Si, Y., Wu, L., Hu, X., Gao, H.: Guaranteed cost control with poles assignment for a flexible air-breathing hypersonic vehicle. Int. J. Syst. Sci. 42(5), 863–876 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Sigthorsson, D., Jankovsky, P., Serrani, A., Yurkovich, S., Bolender, M., Doman, D.B.: Robust linear output feedback control of an airbreathing hypersonic vehicle. J. Guid. Control Dyn. 31(4), 1052–1066 (2008)CrossRefGoogle Scholar
  9. 9.
    An, H., Wang, C., Fidan, B.: Sliding mode disturbance observer-enhanced adaptive control for the air-breathing hypersonic flight vehicle. Acta Astronaut. 139, 111–121 (2017)CrossRefGoogle Scholar
  10. 10.
    Xu, B.: Robust adaptive neural control of flexible hypersonic flight vehicle with dead-zone input nonlinearity. Nonlinear Dyn. 80(3), 1509–1520 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Zong, Q., Ji, Y., Zeng, F., Liu, H.: Output feedback back-stepping control for a generic hypersonic vehicle via small-gain theorem. Aerosp. Sci. Technol. 23(1), 409–417 (2012)CrossRefGoogle Scholar
  12. 12.
    Xu, B., Yang, C., Pan, Y.: Global neural dynamic surface tracking control of strict-feedback systems with application to hypersonic flight vehicle. IEEE Trans. Neural Netw. Learn. 26(10), 2563–2575 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Yan, X.-G., Spurgeon, S.K., Zhu, Q., Zhang, Q.: Memoryless variable structure control for affine nonlinear systems using only output information. Int. J. Robust Nonlinear 25(17), 3316–3329 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mu, C., Ni, Z., Sun, C., He, H.: Air-breathing hypersonic vehicle tracking control based on adaptive dynamic programming. IEEE Trans. Neural Netw. Learn. 28(3), 584–598 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ye, J., Ding, Y.: Controllable keyword search scheme supporting multiple users. Future Gener. Comput. Syst. 81, 433–442 (2018)CrossRefGoogle Scholar
  16. 16.
    Huang, J., Wang, Y., Fukuda, T.: Set-membership-based fault detection and isolation for robotic assembly of electrical connectors. IEEE Trans. Autom. Sci. Eng. 15(1), 160–171 (2018)CrossRefGoogle Scholar
  17. 17.
    Cai, G.B., Duan, G.R., Hu, C.H.: A velocity-based LPV modeling and control framework for an airbreathing hypersonic vehicle. Int. J. Innov. Comput. I 7(5A), 2269–2281 (2011)Google Scholar
  18. 18.
    Lind, R.: Linear parameter-varying modeling and control of structural dynamics with aerothermoelastic effects. J. Guid. Control Dyn. 25(4), 733–739 (2002)CrossRefGoogle Scholar
  19. 19.
    Wu, L., Yang, X., Li, F.: Nonfragile output tracking control of hypersonic air-breathing vehicles with an LPV model. IEEE-ASME Trans. Mechatron. 18(4), 1280–1288 (2013)CrossRefGoogle Scholar
  20. 20.
    Baranyi, P.: TP model transformation as a way to LMI-based controller design. IEEE Trans. Ind. Electron. 51(2), 387–400 (2004)CrossRefGoogle Scholar
  21. 21.
    Cheng, H., Dong, C., Jiang, W., Wang, Q., Hou, Y.: Non-fragile switched H∞ control for morphing aircraft with asynchronous switching. Chin. J. Aeronaut. 30(3), 1127–1139 (2017)CrossRefGoogle Scholar
  22. 22.
    Guo, L., Chen, W.-H.: Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. Int. J. Robust Nonlinear 15(3), 109–125 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Wu, G., Meng, X.: Nonlinear disturbance observer based robust backstepping control for a flexible air-breathing hypersonic vehicle. Aerosp. Sci. Technol. 54, 174–182 (2016)CrossRefGoogle Scholar
  24. 24.
    Xu, B., Shi, Z., Yang, C.: Composite fuzzy control of a class of uncertain nonlinear systems with disturbance observer. Nonlinear Dyn. 80(1), 341–351 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Xu, B., Sun, F., Pan, Y., Chen, B.: Disturbance observer based composite learning fuzzy control of nonlinear systems with unknown dead zone. IEEE Trans. Syst. Man Cybern. Syst 47(8), 1854–1862 (2017)CrossRefGoogle Scholar
  26. 26.
    Wu, H.-N., Feng, S., Liu, Z.-Y., Guo, L.: Disturbance observer based robust mixed H2/H∞ fuzzy tracking control for hypersonic vehicles. Fuzzy Set. Syst. 306, 118–136 (2017)CrossRefzbMATHGoogle Scholar
  27. 27.
    Huang, J., Ri, S., Liu, L., Wang, Y., Kim, J., Pak, G.: Nonlinear disturbance observer-based dynamic surface control of mobile wheeled inverted pendulum. IEEE Trans. Control Syst. Technol. 23(6), 2400–2407 (2015)CrossRefGoogle Scholar
  28. 28.
    Huang, Y., Sun, C., Qian, C., Wang, L.: Non-fragile switching tracking control for a flexible air-breathing hypersonic vehicle based on polytopic LPV model. Chin. J. Aeronaut. 26(4), 948–959 (2013)CrossRefGoogle Scholar
  29. 29.
    Wu, H., Lian, J., Wu, J., Wang, Y.: Research on non-fragile robust control of high-speed reentry vehicle. In: 21st AIAA International Space Planes and Hypersonics Technologies Conference, Xiamen, China, 6–9 Mar 2017Google Scholar
  30. 30.
    Liu, C., Sun, Z., Shi, K., Wang, F.: Robust dynamic output feedback control for attitude stabilization of spacecraft with nonlinear perturbations. Aerosp. Sci. Technol. 64, 102–121 (2017)CrossRefGoogle Scholar
  31. 31.
    Guo, S.-X.: Non-probabilistic robust reliability method and reliability-based performance optimization for active vibration control of structures and dynamic systems with bounded uncertain parameters. J. Vib. Control 22(6), 1472–1491 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Guo, S.-X.: Robust reliability method for non-fragile guaranteed cost control of parametric uncertain systems. Syst. Control Lett. 64, 27–35 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Ditlevsen, O.D., Madsen, H.O.: Structural Reliability Methods, 2nd edn. John Wiley & Sons Inc, New York (2007)Google Scholar
  34. 34.
    Guo, S.-X.: Robust reliability as a measure of stability of controlled dynamic systems with bounded uncertain parameters. J. Vib. Control 16(9), 1351–1368 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. John Wiley & Sons Inc, New York (2002)Google Scholar
  36. 36.
    Tuan, H.D., Apkarian, P., Narikiyo, T., Yamamoto, Y.: Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Trans. Fuzzy Syst. 9(2), 324–332 (2001)CrossRefGoogle Scholar
  37. 37.
    Hu, X., Wu, L., Hu, C., Gao, H.: Fuzzy guaranteed cost tracking control for a flexible air-breathing hypersonic vehicle. IET Control Theory Appl. 6(9), 1238 (2012)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Yam, Y., Baranyi, P., Yang, C.T.: Reduction of fuzzy rule base via singular value decomposition. IEEE Trans. Fuzzy Syst. 7(2), 120–132 (1999)CrossRefGoogle Scholar
  39. 39.
    Petersen, I.R.: A stabilization algorithm for a class of uncertain linear systems. Syst. Control Lett. 8(4), 351–357 (1987)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Key Laboratory of Science and Technology on Multispectral Information Processing, School of AutomationHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations