Skip to main content
Log in

Photo-catalytic degradations of methylene blue, malachite green and Bismarck brown using poly(azomethine)/TiO2 nanocomposite

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The poly(azomethine), TiO2 and poly(azomethine)/TiO2 nanocomposites were prepared and exemplified by Fourier Transform-Infra red spectroscopy, UV–Visible spectroscopy, Powder X-ray diffraction, EDAX, SEM and TEM techniques. Methylene blue, malachite green and Bismarck brown were debased from water using poly(azomethine) (PAZ), titanium di oxide (TiO2), poly(azomethine)/titanium di oxide (PAZ/TiO2) nanocomposites as photo-catalyst in presence of natural sunlight. The deprivation efficiency and reaction kinetics was calculated and the outcome of the photo-catalytic experiments proved that the PAZ/TiO2 nanocomposites reveals excellent photo-catalytic activity and efficient for achromatize the dyestuff present in the waste water than PAZ and TiO2 in presence of normal sunlight. The maximum degradation efficiency 95, 93 and 95% was obtained for PAZ/TiO2 nanocomposites at optimum dosage of catalyst as 500 mg and 50 ppm of methylene blue, malachite green and Bismarck brown dye concentration respectively. The maximum deprivation time was 5 h. After photo-catalytic study the samples were portrayed by FT-IR and UV–Visible spectroscopy. The main aim of this research was to protect our environment from the contamination of water due to the effluence released from dyestuff industries, to resolve this crisis effective nanocomposite were synthesized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Ozbay, B., Genc, N., Ozbay, I., Baghaki, B., Zor, S.: Photocatalytic activities of polyaniline-modified TiO2 and ZnO under visible light: an experimental and modeling study. Clean Technol. Environ. Policy 18(8), 2591–2601 (2016)

    Article  Google Scholar 

  2. Mostafaei, A., Zolriasatein, A.: Synthesis and characterisation of conducting polyaniline nanocomposites containing ZnO nanorods. Prog. Nat. Sci. 22(4), 273–280 (2012)

    Article  Google Scholar 

  3. Zhu, Y., Dan, Y.: Photocatalytic activity of poly(3-hexylthiophene)/titanium dioxide composites for degrading methyl orange. Sol. Energy Mater. Sol. Cells 94, 1658–1664 (2010)

    Article  Google Scholar 

  4. Marigan, J., Lopez Munoz, M.J., van Grieken, R., Aguado, J.: Photocataytic decolorization and mineralization of dyes with nanocrystalline TiO2/SiO2 materials. Ind. Eng. Chem. Res. 46, 7605–7610 (2007)

    Article  Google Scholar 

  5. Barakat, N.A.M., Kanjawal, M.A., Al-Deyab, S.S., Chronakis, I.S.: Influence of silver—doping on the crystal structure, morphology and photocatalytic activity of TiO2 Nanofibers. Mater. Sci. Appl. 2, 1188–1193 (2011)

    Google Scholar 

  6. Mahyar, A., Behnajady, M.A., Modirshahla, N.: Enhanced photocatalytic degradation of CI basic violet 2 using TiO2- SiO2 composite nanoparticles. Photochem. Photobiol. 87, 795–801 (2011)

    Article  Google Scholar 

  7. Shoubin, X.U., Jiang, L., Haigang, Y.A., Yuanqing, S.O., Yi, D.A.: Structure and photocatalytic activity of polythiophene/TiO2 composite particles prepared by photoinduced polymerization. Chin. J. Catal. 32(4), 536–545 (2011)

    Google Scholar 

  8. Zhang, L., Liu, P., Su, Z.: Preparation of PANI- TiO2 nanocomposites and their solid-phase photocatalytic degradation. Polym. Degrad. Stab. 91, 2213–2219 (2006)

    Article  Google Scholar 

  9. Gu, D.E., Yang, B.C., Hu, Y.D.: A novel method for preparing V-doped titanium dioxide photocatalysts with high photocatalytic activity under visible light irradiation. Catal. Lett. 118, 254–259 (2007)

    Article  Google Scholar 

  10. Jamal, R., Osman, Y., Rahman, A., Ali, A., Zhang, Y., Abdiyim, T.: Solid–state synthesis and photocatalytic activity of polyterthiophene/TiO2 nanocomposites. Materials 7, 3786–3801 (2014)

    Article  Google Scholar 

  11. Zhou, X., Jin, B., Luo, J., Xu, X., Zhang, L., Li, J., Guan, H.: Dramatic visible light photocatalytic degradation due to the synergetic effects of TiO2 and PDA nanospheres. RSC Adv. 6, 64446–64449 (2016)

    Article  Google Scholar 

  12. Loryuenyong, V., Charoensuk, J., Charupongtawitch, R., Usakulwattana, A., Buasri, A.: Kinetics of photocatalytic degradation of methylene blue by TiO2–graphene nanocomposite. J. Nanosci. Nanotechnol. 16, 296–302 (2016)

    Article  Google Scholar 

  13. Al-kandari, H., Abdullah, A.M., Mohammed, A.M., Al-Kandari, S.: Enhanced photocatalytic degradation of a phenolic compounds mixture using a highly efficient TiO2/reduced grapheme oxide nanocomposite. J. Mater. Sci. 51(18), 8331–8345 (2016)

    Article  Google Scholar 

  14. Govindhan, P., Pragathiswaran, C.: Synthesis and characterization of TiO2 @ SiO2–Ag nanocomposites towards photocatalytic degradation of rhodamine B and methylene blue. J Mater. Sci. 27(8), 8778–8785 (2016)

    Google Scholar 

  15. Jayanthikalaivani, G., Suja, S.K.: TiO2 (rutile) embedded inulin-A versatile bio-nanocomposite for photocatalytic degradation of methylene blue. Carbohydr. Polym. 142, 51–60 (2016)

    Article  Google Scholar 

  16. Hua-Yue, Z., Ru, J., Yu-Jiang, G., Yong-Qian, F., Ling, X., Guang-Ming, Z.: Effect of key operational factors on decolorization of methyl orange during H2O2 assisted CdS/TiO2/polymer nanocomposite thin films under simulated solar light irradiation. Sep. Purif. Technol. 74, 187–194 (2010)

    Article  Google Scholar 

  17. Eskizeybek, V., Sari, F., Gulce, H., Gulce, A., Avci, A.: Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Appl. Catal. B 119, 197–206 (2012)

    Article  Google Scholar 

  18. Gulce, H., Eskizeybey, V., Haspulat, B., Sari, F., Gulce, A., Avce, A.: Preparation of a new polyaniline/CdO nanocomposite and investigation of its photocatalytic activity: comparative study under UV light and natural sunlight irradiation. Ind. Eng. Chem. Res. 52(32), 10924–10934 (2013)

    Article  Google Scholar 

  19. Nishizawa, K., Okada, M., Watanable, E.: New preparation method of visible light responsive titanium dioxide photocatalytic films. Mater. Sci. Appl. 5, 112–123 (2014)

    Google Scholar 

  20. Schwab, M.G., Hamburger, M., Shu, J., Spies, H.W., Wang, K., Antonietti, M., Feng, X., Mullen, K.: Photocatalytic hydrogen evolution through fully conjugated polyazomethine networks. Chem. Commun. 46(47), 8932–8934 (2010)

    Article  Google Scholar 

  21. Li, L., Hadt, R., Yao, S., Lo, W.Y., Cai, Z., Wu, Q., Pandit, B., Chen, L.X., Yu, L.: Photocatalysts based on cobalt—chelating conjugated polymers for hydrogen evolution from water. Chem. Mater. 28(15), 5394–5399 (2010)

    Article  Google Scholar 

  22. Yopendra, K., Naik, S., Mahadevan, K.M., Madhusudhana, N.: A comparative study of photocatalytic activities of two different synthesized ZnO composite against coralene red F3BS dye in presence of natural solar light. Int. J. Environ. Sci. Res. 1(1), 11–15 (2011)

    Google Scholar 

  23. Perji, E., Ghimpu, L., Hitruc, G., Harabagiu, V., Bruma, M., Marin, L.: Organic-inorganic hybrid nanomaterials based on inorganic oxides and mesomorphic polyazomethine. High Perform. Polym. 27(5), 546–554 (2015)

    Article  Google Scholar 

  24. Tripathi, S.M., Tiwari, D., Ray, A.: Electrical Conductivity of polyazomethine nanocomposite. Indian J Chem 53A, 1505–1512 (2014)

    Google Scholar 

  25. Gopalappa, H., Yogendra, K., Mahadevan, K.M., Madhusydhana, N.: A comparative study on the solar photocatalytic degradation of brilliant red azo dye by CaO and CaMgO2 nanoparticles. Int. J. Sci. Res. 1(2), 91–95 (2012)

    Google Scholar 

  26. Rani, S., Aggarwal, M., Kumar, M., Sharma, S., Kumar, D.: Removal of methylene blue and rhodamine B from water by zirconium oxide/grapheme. Water Sci 30(1), 51–60 (2016)

    Article  Google Scholar 

  27. Sabbaghi, S., Doraghi, F.: Photocatalytic degradation of methylene blue by ZnO/SnO2 nanocomposite. J. Water Environ. Nanotechnol 1(1), 27–34 (2016)

    Google Scholar 

  28. Shahabuddin, S., Muhamad Sariah, N., Mohamad, S., Joon Ching, J.: SrTiO3 Nanocube-doped polyaniline nanocomposites with enhanced photocatalytic degradation of methylene blue under visible light. Polymers 8, 27 (2016)

    Article  Google Scholar 

  29. Petronella, F., Truppi, A., Ingrosso, C., Placido, T., Striccoli, M., Curri, M.L., Agostino, A., Comparelli, R.: Nanocomposite materials for photocatalytic degradation of pollutants. Catal. Today 281, 85–100 (2017)

    Article  Google Scholar 

  30. Pan, B., Xie, Y., Zhang, S., Lv, L., Zhang, W.: Visible light photocatalytic degradation of RhB by polymer—Cds Nanocomposites: role of the host functional groups. Appl. Mater. Interfaces 4(8), 3938–3943 (2012)

    Article  Google Scholar 

  31. Mzoughi, M., Anku, W.W., Oppong, S.O.B., Shukla, S.K., Agorku, E.S., Govender, P.P.: Neodymium doped ZrO2-graphene oxide nanocomposites: a promising photocatalyst for photodegradation of Eosin Y dye. Adv. Mater. Lett. 7(12), 946–950 (2016)

    Article  Google Scholar 

  32. Hassena, H.: Photocatalytic degradation of methylene blue by using Al2O3/Fe2O3 nanocomposite under visible light. Modern Chem Appl. 4(1), 1–5 (2016)

    Article  Google Scholar 

  33. Pathanaia, D., Gupta, D., Al-Muhtaseb, A.H., Sharma, G., Kumar, A., Nausad, M., Ahamed, T., Alshehri, S.M.: Photocatalytic degradation of highly toxic dyes using chitosan-g-poly(acrylamide)/ZnS in presence of solar irradiation. J. Photochem. Photobiol. A 329, 61–68 (2016)

    Article  Google Scholar 

  34. Rajendran, S., Khan, M.M., Gracia, F., Qin, J., Gupta, V.K., Arumainathan, S.: Ce 3+ -ion—induced visible light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Sci. Res. 5, 31641 (2016)

    Google Scholar 

  35. Abdiriyum, T., Ali, A., Jamal, R., Osman, Y., Zhang, Y.: A facile solid-state heating method for preparation of poly(3,4-ethylenedioxythiophene)/ZnO nanocomposite and photocatalytic activity. Nano Res. Lett. 9, 89 (2014)

    Article  Google Scholar 

  36. Madhusudhana, N., Yogendra, K., Mahadevan, K.M., Naik, S.: Photocatalytic degradation of Coralene Dark red 2B azo dye using calcium zincate nanoparticle in presence of natural sunlight: an aid to environmental remediation. Int J Chem Eng Appl. 2(4), 294–298 (2011)

    Google Scholar 

  37. Madhusudhaa, N., Yogendra, K., Mahadevan, K.M.: Photocatalytic degradation of violet GL2B azo dye by using calcium aluminate nanoparticle in presence of solar light. Res. J. Chem. Sci. 2(5), 72–77 (2012)

    Google Scholar 

  38. Whang, T.J., Hsieh, M.T., Chen, H.H.: Visible-light photocatalytic degradation of methylene blue with laser—induced Ag/ZnO nanoparticles. Appl. Surf. Sci. 258, 2796–2801 (2012)

    Article  Google Scholar 

  39. Nosrati, R., Olad, A., Maramifar, R.: Degradation of ampicillin antibiotic in aqueous solution by ZnO/polyaniline nanocomposite as photocatalyst under sunlight irradiation. Environ. Sci. Pollut. Res. 19, 2291–2299 (2012)

    Article  Google Scholar 

  40. Sadavarte, N.V., Avadhani, C.V., Wadgaonkar, P.P.: Synthesis and characterization of new organosoluble aromatic polyamides and polyazomethines containing pendent pentadecyl chains. High Perform. Polym. 23(7), 494–505 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the management and principal of Hindusthan college of Engineering and Technology to carry out the work in a successful manner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Pradeeba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradeeba, S.J., Sampath, K. & Ramadevi, A. Photo-catalytic degradations of methylene blue, malachite green and Bismarck brown using poly(azomethine)/TiO2 nanocomposite. Cluster Comput 22 (Suppl 2), 3893–3909 (2019). https://doi.org/10.1007/s10586-018-2505-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-2505-4

Keywords

Navigation