Abstract
Predictive analytics is the branch of the advanced analytics which makes the user to predict the future events with current statistics. The patterns found in historical and transactional data can be used to identify risks and opportunities for future. Predictive analytics models capture relationships among many factors to assess risk with a particular set of conditions to assign a score. This paper provides predictive analysis on demonetization data using support vector machine approach (PAD-SVM). The proposed PAD-SVM system involved three stages including preprocessing stage, descriptive analysis stage, and prescriptive analysis. The pre-processing stage involves cleaning the obtained data, performing missing value treatment and splitting the necessary data from the tweets. The descriptive analysis stage involves finding the most influential people regarding this subject and performing analytical functionalities. Semantic analysis also is performed to find the sentiment values of the users and to find the compound polarity of each tweet. Predictive analysis is performed to view the current mindset of people and the society reacts to the issue in the current time. This analysis is performed to find out the overall view point of the society and their view may change in the near-future in regarding to the scheme of demonetization as well.
This is a preview of subscription content, access via your institution.






References
Márquez-Vera, C., Morales, C.R., Soto, S.V.: Predicting school failure and dropout by using data mining techniques. IEEE J. Latin-Am. Learn. Technol. 8(1), 7–14 (2013)
Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of HLT and EMNLP, vol. 5, pp. 347–354. ACL, New York (2005)
Tushar, R., Srivastava, S.: Analyzing stock market movements using twitter sentiment analysis. In: Proceedings of the 2012 International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012), vol. 6. IEEE Computer Society (2012)
Jeffrey, D., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 4, 107–113 (2008)
Jimmy, L., Kolcz, A.: Large-scale machine learning at twitter. In: Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, vol. 8, pp. 793–804. ACM, New York (2012)
Jiang, B., Topaloglu, U., Yu, F.: Towards large-scale twitter mining for drug-related adverse events. In: Proceedings of the 2012 International Workshop on Smart Health and Wellbeing, vol. 2, pp. 25–32. ACM, New York (2012)
Bingwei, L., Blasch, E., Chen, Y., Shen, D., Chen, G.: Scalable sentiment classification for big data analysis using Naive Bayes classifier. In: 2013 IEEE International Conference on Big Data, vol. 5, pp. 99–104. IEEE (2013)
Cuesta, A., Barrero, D.F.: MD R-Moreno: A framework for massive twitter data extraction and analysis. Malays. J. Comput. Sci. 3, 50–67 (2014)
Michal, S., Romanowski, A.: Sentiment analysis of twitter data within big data distributed environment for stock prediction. In: 2015 Federated Conference on Computer Science and Information Systems, vol. 2, pp. 1349–1354. IEEE (2015)
Mohit, T., Gohokar, I., Sable, J., Paratwar, D., Wajgi, R.: Multi-class tweet categorization using map reduce paradigm. Int. J. Comput. Trends Technol. 3, 78–81 (2014)
Tao, C.C., Kim, S.K., Lin, Y.A., Yu, Y.Y., Bradski, G., Ng, A.Y., Olukotun, K.: Map-reduce for machine learning on multicore. NIPS 6, 281–288 (2006)
Yingyi, B.: HaLoop: efficient iterative data processing on large clusters. In: Proceedings of the VLDB Endowment 3.1-2, vol. 6, pp. 285–296 (2010)
Maite, T.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 7, 267–307 (2011)
Katkar, V.D., Kulkarni, S.V.: A novel parallel implementation of Naive Bayesian classifier for big data. In: International Conference on Green Computing, Communication and Conservation of Energy, vol. 7, pp. 847–852, ISBN 978-1-4673-6126-2/2013. IEEE (2015)
Jose, A.K., Bhatia, N., Krishna, S.: Twitter Sentiment Analysis, vol. 5. National Institute of Technology Calicut, IEEE, Calicut (2010)
Wook, M., Hani Yahaya, Y., Wahab, N.: Predicting NDUM student’s academic performance using data mining techniques. In: Second International Conference on Computer and Electrical Engineering, vol. 3, pp. 357–361. IEEE (2009)
Kaliappan, M., Augustine, S., Paramasivan, B.: Enhancing energy efficiency and load balancing in mobile adhoc network using dynamic genetic algorithms. J. Netw. Comput. Appl. 73, 35–43 (2016)
Kaliappan, M., Mariappan, E., Prakash, M.V., Paramasivan, B.: Load balanced clustering technique in MANET using genetic algorithms. Defence Sci. J. 66(3), 251–258 (2016). https://doi.org/10.14429/dsj.66.9205
Subbulakshmi, P., Vimal, S.: Secure data packet transmission in MANET using enhanced identity-based cryptography. Int. J. New Technol. Sci. Eng. 3(12), 35–42 (2016)
Ghiassi, M., Skinner, J., Zimbra, D.: Twitter brand sentiment analysis: a hybrid system using n-gram analysis and dynamic artificial neural network. Expert Syst. Appl. 40(16), 6266–6282 (2013)
Hao, M., Rohrdantz, C., Janetzko, H., Dayal, U., Kiem, D.A., Haug, L.E., Hsu, M.C.: Visual sentiment analysis on twitter data streams. In: IEEE Symposium on Visual Analytics Science and Technology, vol. 20, October 23, Providence, RI, USA (2014)
Kaliappan, M., Paramasivam, B.: Enhancing secure routing in mobile ad hoc networks using a dynamic Bayesian signalling game model. Comput. Electr. Eng. 41, 301–313 (2015)
Mariappan, E., Kaliappan, M., Vimal, S.: Energy efficient routing protocol using Grover’s searching algorithm for MANET. Asian J. Inf. Technol. 15, 4986–4994 (2016). https://doi.org/10.3923/ajit.2016.4986.4994
Vimal, S., Kalaivani, L., Kaliappan, M.: Collaborative approach on mitigating spectrum sensing data hijack attack and dynamic spectrum allocation based on CASG modeling in wireless cognitive radio networks. Clust. Comput. (2017). https://doi.org/10.1007/s10586-017-1092-0
Sudhakar Ilango, S., Vimal, S., Kaliappan, M., Subbulakshmi, P.: Optimization using Artificial Bee Colony based clustering approach for big data. Clust. Comput. (2018). https://doi.org/10.1007/s10586-017-1571-3
Suresh, A., Varatharajan, R.: Competent resource provisioning and distribution techniques for cloud computing environment. Cluster Comput. (2017). https://doi.org/10.1007/s10586-017-1293-6
Chinnasamy, A., Sivakumar, B., Selvakumari, P., Suresh, A.: Minimum connected dominating set based RSU allocation for smartCloud vehicles in VANET. Cluster Comput. (2018). https://doi.org/10.1007/s10586-018-1760-8
Suresh, A., Reyana, A., Varatharajan, R.: CEMulti-core architecture for optimization of energy over heterogeneous environment with high performance smart sensor devices. Wirel. Pers. Commun. (2018). https://doi.org/10.1007/s11277-018-5504-0
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kannan, N., Sivasubramanian, S., Kaliappan, M. et al. Predictive big data analytic on demonetization data using support vector machine. Cluster Comput 22 (Suppl 6), 14709–14720 (2019). https://doi.org/10.1007/s10586-018-2384-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10586-018-2384-8