Predictive big data analytic on demonetization data using support vector machine

  • Nattar Kannan
  • S. Sivasubramanian
  • M. Kaliappan
  • S. Vimal
  • A. Suresh


Predictive analytics is the branch of the advanced analytics which makes the user to predict the future events with current statistics. The patterns found in historical and transactional data can be used to identify risks and opportunities for future. Predictive analytics models capture relationships among many factors to assess risk with a particular set of conditions to assign a score. This paper provides predictive analysis on demonetization data using support vector machine approach (PAD-SVM). The proposed PAD-SVM system involved three stages including preprocessing stage, descriptive analysis stage, and prescriptive analysis. The pre-processing stage involves cleaning the obtained data, performing missing value treatment and splitting the necessary data from the tweets. The descriptive analysis stage involves finding the most influential people regarding this subject and performing analytical functionalities. Semantic analysis also is performed to find the sentiment values of the users and to find the compound polarity of each tweet. Predictive analysis is performed to view the current mindset of people and the society reacts to the issue in the current time. This analysis is performed to find out the overall view point of the society and their view may change in the near-future in regarding to the scheme of demonetization as well.


Descriptive analysis Predictive analysis Support vector machine Sentiment analysis 


  1. 1.
    Márquez-Vera, C., Morales, C.R., Soto, S.V.: Predicting school failure and dropout by using data mining techniques. IEEE J. Latin-Am. Learn. Technol. 8(1), 7–14 (2013)CrossRefGoogle Scholar
  2. 2.
    Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of HLT and EMNLP, vol. 5, pp. 347–354. ACL, New York (2005)Google Scholar
  3. 3.
    Tushar, R., Srivastava, S.: Analyzing stock market movements using twitter sentiment analysis. In: Proceedings of the 2012 International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012), vol. 6. IEEE Computer Society (2012)Google Scholar
  4. 4.
    Jeffrey, D., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 4, 107–113 (2008)Google Scholar
  5. 5.
    Jimmy, L., Kolcz, A.: Large-scale machine learning at twitter. In: Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, vol. 8, pp. 793–804. ACM, New York (2012)Google Scholar
  6. 6.
    Jiang, B., Topaloglu, U., Yu, F.: Towards large-scale twitter mining for drug-related adverse events. In: Proceedings of the 2012 International Workshop on Smart Health and Wellbeing, vol. 2, pp. 25–32. ACM, New York (2012)Google Scholar
  7. 7.
    Bingwei, L., Blasch, E., Chen, Y., Shen, D., Chen, G.: Scalable sentiment classification for big data analysis using Naive Bayes classifier. In: 2013 IEEE International Conference on Big Data, vol. 5, pp. 99–104. IEEE (2013)Google Scholar
  8. 8.
    Cuesta, A., Barrero, D.F.: MD R-Moreno: A framework for massive twitter data extraction and analysis. Malays. J. Comput. Sci. 3, 50–67 (2014)Google Scholar
  9. 9.
    Michal, S., Romanowski, A.: Sentiment analysis of twitter data within big data distributed environment for stock prediction. In: 2015 Federated Conference on Computer Science and Information Systems, vol. 2, pp. 1349–1354. IEEE (2015)Google Scholar
  10. 10.
    Mohit, T., Gohokar, I., Sable, J., Paratwar, D., Wajgi, R.: Multi-class tweet categorization using map reduce paradigm. Int. J. Comput. Trends Technol. 3, 78–81 (2014)Google Scholar
  11. 11.
    Tao, C.C., Kim, S.K., Lin, Y.A., Yu, Y.Y., Bradski, G., Ng, A.Y., Olukotun, K.: Map-reduce for machine learning on multicore. NIPS 6, 281–288 (2006)Google Scholar
  12. 12.
    Yingyi, B.: HaLoop: efficient iterative data processing on large clusters. In: Proceedings of the VLDB Endowment 3.1-2, vol. 6, pp. 285–296 (2010)Google Scholar
  13. 13.
    Maite, T.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 7, 267–307 (2011)Google Scholar
  14. 14.
    Katkar, V.D., Kulkarni, S.V.: A novel parallel implementation of Naive Bayesian classifier for big data. In: International Conference on Green Computing, Communication and Conservation of Energy, vol. 7, pp. 847–852, ISBN 978-1-4673-6126-2/2013. IEEE (2015)Google Scholar
  15. 15.
    Jose, A.K., Bhatia, N., Krishna, S.: Twitter Sentiment Analysis, vol. 5. National Institute of Technology Calicut, IEEE, Calicut (2010)Google Scholar
  16. 16.
    Wook, M., Hani Yahaya, Y., Wahab, N.: Predicting NDUM student’s academic performance using data mining techniques. In: Second International Conference on Computer and Electrical Engineering, vol. 3, pp. 357–361. IEEE (2009)Google Scholar
  17. 17.
    Kaliappan, M., Augustine, S., Paramasivan, B.: Enhancing energy efficiency and load balancing in mobile adhoc network using dynamic genetic algorithms. J. Netw. Comput. Appl. 73, 35–43 (2016)CrossRefGoogle Scholar
  18. 18.
    Kaliappan, M., Mariappan, E., Prakash, M.V., Paramasivan, B.: Load balanced clustering technique in MANET using genetic algorithms. Defence Sci. J. 66(3), 251–258 (2016). CrossRefGoogle Scholar
  19. 19.
    Subbulakshmi, P., Vimal, S.: Secure data packet transmission in MANET using enhanced identity-based cryptography. Int. J. New Technol. Sci. Eng. 3(12), 35–42 (2016)Google Scholar
  20. 20.
    Ghiassi, M., Skinner, J., Zimbra, D.: Twitter brand sentiment analysis: a hybrid system using n-gram analysis and dynamic artificial neural network. Expert Syst. Appl. 40(16), 6266–6282 (2013)CrossRefGoogle Scholar
  21. 21.
    Hao, M., Rohrdantz, C., Janetzko, H., Dayal, U., Kiem, D.A., Haug, L.E., Hsu, M.C.: Visual sentiment analysis on twitter data streams. In: IEEE Symposium on Visual Analytics Science and Technology, vol. 20, October 23, Providence, RI, USA (2014)Google Scholar
  22. 22.
    Kaliappan, M., Paramasivam, B.: Enhancing secure routing in mobile ad hoc networks using a dynamic Bayesian signalling game model. Comput. Electr. Eng. 41, 301–313 (2015)CrossRefGoogle Scholar
  23. 23.
    Mariappan, E., Kaliappan, M., Vimal, S.: Energy efficient routing protocol using Grover’s searching algorithm for MANET. Asian J. Inf. Technol. 15, 4986–4994 (2016). Google Scholar
  24. 24.
    Vimal, S., Kalaivani, L., Kaliappan, M.: Collaborative approach on mitigating spectrum sensing data hijack attack and dynamic spectrum allocation based on CASG modeling in wireless cognitive radio networks. Clust. Comput. (2017). Google Scholar
  25. 25.
    Sudhakar Ilango, S., Vimal, S., Kaliappan, M., Subbulakshmi, P.: Optimization using Artificial Bee Colony based clustering approach for big data. Clust. Comput. (2018). Google Scholar
  26. 26.
    Suresh, A., Varatharajan, R.: Competent resource provisioning and distribution techniques for cloud computing environment. Cluster Comput. (2017). Google Scholar
  27. 27.
    Chinnasamy, A., Sivakumar, B., Selvakumari, P., Suresh, A.: Minimum connected dominating set based RSU allocation for smartCloud vehicles in VANET. Cluster Comput. (2018). Google Scholar
  28. 28.
    Suresh, A., Reyana, A., Varatharajan, R.: CEMulti-core architecture for optimization of energy over heterogeneous environment with high performance smart sensor devices. Wirel. Pers. Commun. (2018). Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nattar Kannan
    • 1
  • S. Sivasubramanian
    • 1
  • M. Kaliappan
    • 2
  • S. Vimal
    • 2
  • A. Suresh
    • 3
  1. 1.Department of CSEDhanalakshmi College of EngineeringChennaiIndia
  2. 2.Department of Information TechnologyNational Engineering CollegeKovilpattiIndia
  3. 3.Department of CSENehru Institute of Engineering and TechnologyCoimbatoreIndia

Personalised recommendations