Optimized virtual space vector modulation for three-phase three-level T-type converter

  • Yan Xia
  • Jianxiao Zou
  • Kai Li
  • Zesheng Min
  • Lang Du


The virtual space-vector pulse-width modulation (PWM) control for three level neutral-point-clamped converter (3L-NPC) is ineffective when the modulation ratio is high or the neutral-point (NP) voltage unbalanced due to external factors. In this paper, principles and characteristics of virtual space-vector PWM (VSVPWM) are studied, then an optimized virtual space vector PWM (OVSVPWM) is proposed, which can make up for the shortage of VSVPWM by adjusting the NP current of the virtual medium vector and assigning the proportion of positive and negative small vectors. The well-developed methods to calculate the durations of the virtual vectors for the VSVPWM can be directly utilized in OVSVPWM. In addition, a control strategy of 3L-NPC based on OVSVPWM is proposed, which can adjust the unbalancing degree with a high accuracy for high modulation indexes and load power factors. Simulated and experimental results are given to validate the effectiveness.


Three-level neutral-point-clamped converter (3L-NPC) Optimized virtual-space-vector PWM (VSVPWM) Neutral point balanced 


  1. 1.
    Nabae, A., Takahashi, I., Akagi, H.: A new neutral-point-clamped pwm inverter. IEEE Trans. Ind. Appl. 5, 518–523 (1981)CrossRefGoogle Scholar
  2. 2.
    Kanchan, R.S., Tekwani, P.N., Gopakumar, K.: Three-level inverter scheme with common mode voltage elimination and dc link capacitor voltage balancing for an open-end winding induction motor drive. IEEE Trans. Power Electron. 21(6), 1676–1683 (2006)CrossRefGoogle Scholar
  3. 3.
    Alepuz, S., Busquets-Monge, S., Bordonau, J., Gago, J., Gonzalez, D., Balcells, J.: Interfacing renewable energy sources to the utility grid using a three-level inverter. IEEE Trans. Ind. Electron. 53(5), 1504–1511 (2006)CrossRefGoogle Scholar
  4. 4.
    Rodriguez, J., Bernet, S., Steimer, P.K., Lizama, I.E.: A survey on neutral-point-clamped inverters. IEEE Trans. Ind. Electron. 57(7), 2219–2230 (2010)CrossRefGoogle Scholar
  5. 5.
    Hu, H., Yao, W., Lu, Z.: Design and implementation of three-level space vector PWM IP core for FPGAs. IEEE Trans. Power Electron. 22(6), 2234–2244 (2007)CrossRefGoogle Scholar
  6. 6.
    Gupta, A.K., Khambadkone, A.M.: A simple space vector pwm scheme to operate a three-level npc inverter at high modulation index including overmodulation region, with neutral point balancing. IEEE Trans. Ind. Appl. 43(3), 751–760 (2007)CrossRefGoogle Scholar
  7. 7.
    Nguyen, T.D., Lee, H.H.: Development of a three-to-five-phase indirect matrix converter with carrier-based PWM based on space-vector modulation analysis. IEEE Trans. Ind. Electron. 63(1), 13–24 (2016)CrossRefGoogle Scholar
  8. 8.
    Li, X., Dusmez, S., Akin, B., Rajashekara, K.: A new SVPWM for the phase current reconstruction of three-phase three-level T-type converters. IEEE Trans. Power Electron. 31(3), 2627–2637 (2016)CrossRefGoogle Scholar
  9. 9.
    Lyu, J., Hu, W., Wu, F., Yao, K., Wu, J.: Three-level saddle space vector pulse width modulation strategy based on two-level space vector pulse width modulation for neutral-point-clamped three-level inverters. IET Power Electron. 9(5), 874–882 (2016)CrossRefGoogle Scholar
  10. 10.
    Jiao, Y., Lee, F.C., Lu, S.: Space vector modulation for three-level NPC converter with neutral point voltage balance and switching loss reduction. IEEE Trans. Power Electron. 29(10), 5579–5591 (2014)CrossRefGoogle Scholar
  11. 11.
    Lee, J.S., Yoo, S., Lee, K.B.: Novel discontinuous PWM method of a three-level inverter for neutral-point voltage ripple reduction. IEEE Trans. Ind. Electron. 63(6), 3344–3354 (2016)CrossRefGoogle Scholar
  12. 12.
    Xia, C., Zhang, G., Yan, Y., Gu, X., Shi, T., He, X.: Discontinuous space vector PWM strategy of neutral-point-clamped three-level inverters for output current ripple reduction. IEEE Trans. Power Electron. 32(7), 5109–5121 (2017)CrossRefGoogle Scholar
  13. 13.
    Lee, J.S., Lee, K.B.: Time-offset injection method for neutral-point AC ripple voltage reduction in a three-level inverter. IEEE Trans. Power Electron. 31(3), 1931–1941 (2016)CrossRefGoogle Scholar
  14. 14.
    Ren, K., Zhang, X., Wang, F., Cao, R.: Carrier-based generalised discontinuous pulse-width modulation strategy with flexible neutral-point voltage control and optimal losses for a three-level converter. IET Power Electron. 9(9), 1862–1872 (2016)CrossRefGoogle Scholar
  15. 15.
    Orfanoudakis, G.I., Yuratich, M.A., Sharkh, S.M.: Nearest-vector modulation strategies with minimum amplitude of low-frequency neutral-point voltage oscillations for the neutral-point-clamped converter. IEEE Trans. Power Electron. 28(10), 4485–4499 (2013)CrossRefGoogle Scholar
  16. 16.
    Pou, J., Zaragoza, J., Rodriguez, P., Ceballos, S., Sala, V.M., Burgos, R.P., Boroyevich, D.: Fast-processing modulation strategy for the neutral-point-clamped converter with total elimination of low-frequency voltage oscillations in the neutral point. IEEE Trans. Ind. Electron. 54(4), 2288–2294 (2007)CrossRefGoogle Scholar
  17. 17.
    Busquets-Monge, S., Bordonau, J., Boroyevich, D., Somavilla, S.: The nearest three virtual space vector PWM—a modulation for the comprehensive neutral-point balancing in the three-level NPC inverter. IEEE Power Electron. Lett. 2(1), 11–15 (2004)CrossRefGoogle Scholar
  18. 18.
    Wu, X., Tan, G., Ye, Z., Yao, G., Liu, Z., Liu, G.: Virtual-space-vector PWM for a three-level neutral-point-clamped inverter with unbalanced DC-links. IEEE Trans. Power Electron. 33(3), 2630–2642 (2018)CrossRefGoogle Scholar
  19. 19.
    Monge, S.B., Somavilla, S., Bordonau, J., Boroyevich, D.: Capacitor voltage balance for the neutral-point-clamped converter using the virtual space vector concept with optimized spectral performance. IEEE Trans. Power Electron. 22(4), 1128–1135 (2007)CrossRefGoogle Scholar
  20. 20.
    Hu, C., Yu, X., Holmes, D.G., Shen, W., Wang, Q., Luo, F., Liu, N.: An improved virtual space vector modulation scheme for three-level active neutral-point-clamped inverter. IEEE Trans. Power Electron. 32(10), 7419–7434 (2017)CrossRefGoogle Scholar
  21. 21.
    Choudhury, A., Pillay, P., Williamson, S.S.: A hybrid PWM-based DC-link voltage balancing algorithm for a three-level NPC DC/AC traction inverter drive. IEEE J. Emerg. Sel. Top. Power Electron. 3(3), 805–816 (2015)CrossRefGoogle Scholar
  22. 22.
    Wang, J., Gao, Y., Jiang, W.: A carrier-based implementation of virtual space vector modulation for neutral-point-clamped three-level inverter. IEEE Trans. Ind. Electron. 64(12), 9580–9586 (2017)CrossRefGoogle Scholar
  23. 23.
    Das, S., Narayanan, G.: Novel switching sequences for a space-vector-modulated three-level inverter. IEEE Trans. Ind. Electron. 59(3), 1477–1487 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yan Xia
    • 1
  • Jianxiao Zou
    • 1
  • Kai Li
    • 1
  • Zesheng Min
    • 2
  • Lang Du
    • 2
  1. 1.School of Automation EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Dongfang Electric CorporationChengduChina

Personalised recommendations