Advertisement

Clustered entropy computing: a holoentropy based encoding scheme for high efficient computing systems

  • Venkatesh Munagala
  • K. Satya Prasad
Article
  • 21 Downloads

Abstract

This paper proposes a novel clustered entropy encoding scheme for high efficient computing systems for distributed video coding. As an exemplary system, high-efficiency video coding (HEVC) standard has been considered in this paper. The encoding process in HEVC system is performed using traditional entropy formula. While processing high resolution video sequences, it requires substantial improvement. To meet the requirement, this paper introduces clustered entropy computing, which distinguishes the video information has useful outliers. The pixel variations under varying frames are clustered based on the interestingness and the outliers are removed using an advanced entropy principle called as holoentropy. The proposed encoding scheme is adopted in the HEVC and the simulations are carried out. Experiments are conducted using eight benchmark video sequences and the statistical metrics such as mean, median, min, max and deviation measures are considered for investigating the PSNR versus compression ratio. In addition to this, the computational time is calculated for the best selection of the method. The experimental results show that the quality of the video is preserved more than the conventional encoding for increased compression ratios.

Keywords

Cluster Holoentropy HEVC Video coding 

References

  1. 1.
    Sullivan, G., Ohm, J., Han, W.-J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2012)CrossRefGoogle Scholar
  2. 2.
    Ohm, J., Sullivan, G.J., Schwarz, H., Keng, T.T., Wiegand, T.: Comparison of the coding efficiency of video coding standards—including high efficiency video coding (HEVC). IEEE Trans. Circuits Syst. Video Technol. 22(12), 1669–1684 (2012)CrossRefGoogle Scholar
  3. 3.
    Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Technol. 13(7), 560–576 (2003)CrossRefGoogle Scholar
  4. 4.
    Min, B., Cheung, R.C.C.: A fast CU size decision algorithm for the HEVC intra encoder. IEEE Trans. Circuits Syst. Video Technol. 25(5), 892–896 (2015)CrossRefGoogle Scholar
  5. 5.
    Lainema, J., Bossen, F., Han, W.-J., Min, J., Ugur, K.: Intra coding of the HEVC standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1792–1801 (2012)CrossRefGoogle Scholar
  6. 6.
    Sinangil, M.E., Sze, V., Zhou, M., Chandrakasan, A.P.: Cost and coding efficient motion estimation design considerations for high efficiency video coding (HEVC) standard. IEEE J. Sel. Topics Signal Process. 7(6), 1017–1028 (2013)CrossRefGoogle Scholar
  7. 7.
    Helle, P., Oudin, S., Bross, B., Marpe, D., Bici, M.O., Ugur, K., Jung, J., Clare, G., Wiegand, T.: Block merging for quadtree-based partitioning in HEVC. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1720–1731 (2012)CrossRefGoogle Scholar
  8. 8.
    Kim, J., Choe, Y., Kim, Y.-G.: Fast coding unit size decision algorithm for intra coding in HEVC. In: Proceedings of the IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, pp. 637–638 (2013)Google Scholar
  9. 9.
    Zhan, H., Ma, Z.: Early termination schemes for fast intra mode decision in high efficiency video coding. In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, pp. 45–48 (2013)Google Scholar
  10. 10.
    Tian, G., Goto, S.: Content adaptive prediction unit size decision algorithm for HEVC intra coding. In: Proceedings of the Picture Coding Symposium (PCS), Krakow, pp. 405–408 (2012)Google Scholar
  11. 11.
    Lee, H.S., Kim, K.Y., Kim, T.R., Park, G.H.: Fast encoding algorithm based on depth of coding-unit for high efficiency video coding. Opt. Eng. (2012).  https://doi.org/10.1117/1.oe.51.6.067402 Google Scholar
  12. 12.
    Zhou, C., Zhou, F., Chen, Y.: Spatio-temporal correlation-based fast coding unit depth decision for high efficiency video coding. J. Electron. Imaging (2013).  https://doi.org/10.1117/1.jei.22.4.043001 Google Scholar
  13. 13.
    Shen, L., Zhang, Z., An, P.: Fast CU size decision and mode decision algorithm for HEVC intra coding. IEEE Trans. Consum. Electron. 59(1), 207–213 (2013)CrossRefGoogle Scholar
  14. 14.
    Shen, L., Liu, Z., Zhang, X., Zhao, W., Zhang, Z.: An effective CU size decision method for HEVC encoders. IEEE Trans. Multimed. 15(2), 465–470 (2013)CrossRefGoogle Scholar
  15. 15.
    Bossen, F., Bross, B., Suhring, K., Flynn, D.: HEVC complexity and implementation analysis. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1685–1696 (2012)CrossRefGoogle Scholar
  16. 16.
    Gabriellini, A., Flynn, D., Mrak, M., Davies, T.: Combined intra-prediction for high-efficiency video coding. IEEE J. Sel. Topics Signal Process. 5(7), 1282–1289 (2011)CrossRefGoogle Scholar
  17. 17.
    Diniz, C.M., Shafique, M., Bampi, S., Henkel, J.: A reconfigurable hardware architecture for fractional pixel interpolation in high efficiency video coding. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(2), 238–251 (2015)CrossRefGoogle Scholar
  18. 18.
    Sze, V., Chandrakasan, A.P.: A highly parallel and scalable CABAC decoder for next generation video coding. In: Proceedings of the IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, pp. 126–128 (2011)Google Scholar
  19. 19.
    Choi, Y., Choi, J.: High-throughput CABAC codec architecture for HEVC. Electron. Lett. 49(18), 1145–1147 (2013)CrossRefGoogle Scholar
  20. 20.
    Zhou, D., Zhou, J., Fei, W., Goto, S.: Ultra-high-throughput VLSI architecture of H.265/HEVC CABAC encoder for UHDTV applications. IEEE Trans. Circuits Syst. Video Technol. 25(3), 497–507 (2015)CrossRefGoogle Scholar
  21. 21.
    Shanableh, T., Peixoto, E., Izquierdo, E.: MPEG-2 to HEVC video transcoding with content-based modeling. IEEE Trans. Circuits Syst. Video Technol. 23(7), 1191–1196 (2013)CrossRefGoogle Scholar
  22. 22.
    Sole, J., Joshi, R., Nguyen, N., Ji, T., Karczewicz, M., Clare, G., Henry, F., Duenas, A.: Transform coefficient coding in HEVC. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1765–1777 (2012)CrossRefGoogle Scholar
  23. 23.
    Nguyen, T., Helle, P., Winken, M., Bross, B., Marpe, D., Schwarz, H., Wiegand, T.: Transform coding techniques in HEVC. IEEE J. Sel. Topics Signal Process. 7(6), 978–989 (2013)CrossRefGoogle Scholar
  24. 24.
    Hu, N., Yang, E.: Fast mode selection for HEVC intra-frame coding with entropy coding refinement based on a transparent composite model. IEEE Trans. Circuits Syst. Video Technol. 25(9), 1521–1532 (2015)CrossRefGoogle Scholar
  25. 25.
    Girod, B., Aaron, A.M., Rane, S., Rebollo-Monedero, D.: Distributed video coding. Proc. IEEE 93(1), 71–83 (2005)CrossRefMATHGoogle Scholar
  26. 26.
    Shen, Y.C., Cheng, H.P., Luo, J.C., Lin, Y.H., Wu, J.L.: Efficient real-time distributed video coding by parallel progressive side information regeneration. IEEE Sens. J. 17(6), 1872–1883 (2017)CrossRefGoogle Scholar
  27. 27.
    Sullivan, G.J., Boyce, J.M., Chen, Y., Ohm, J.R., Segall, C.A., Vetro, A.: Standardized extensions of high efficiency video coding (HEVC). IEEE J. Sel. Topics Signal Process. 7(6), 1001–1016 (2013)CrossRefGoogle Scholar
  28. 28.
    Kumar, B.S.S., Manjunath, A.S., Christopher, S.: Improved entropy encoding for high efficient video coding standard. Alex. Eng. J. (in press)Google Scholar
  29. 29.
    Kumar, B.S.S., Manjunath, A.S., Christopher, S.: Improvisation in HEVC performance by weighted entropy encoding technique. In: Data Engineering and Intelligent Computing, vol. 542, pp. 177–185. Springer, SingaporeGoogle Scholar
  30. 30.
    Sunil Kumar B.S., Manjunath, A.S., Christopher, S.: Inter frame-rate distortion optimisation on scalable video for HEVC. In: 2016 International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS), Bangalore, pp. 100–104 (2016)Google Scholar
  31. 31.
    Alshin, A., Alshina, E., Park, J.: High precision probability estimation for CABAC. In: 2013 Visual Communications and Image Processing (VCIP), Kuching, pp. 1–6 (2013)Google Scholar
  32. 32.
    Yuan, H., Kwong, S., Wang, X., Zhang, Y., Li, F.: A virtual view PSNR estimation method for 3-D videos. IEEE Trans. Broadcast. 62(1), 134–140 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.JNTU KakinadaKakinadaIndia
  2. 2.Department of ECEVasireddy Venkatadri Institute of TechnologyNamburIndia
  3. 3.KLEFVaddeswaramIndia

Personalised recommendations