Advertisement

Differential evolution with improved elite archive mutation and dynamic parameter adjustment

  • Zengquan Lu
  • Lilun Zhang
  • Dezhi Wang
Article
  • 42 Downloads

Abstract

Control parameters and mutation methods impact upon the global search ability of differential evolution algorithm (DE), and varying optimization issues own varying parameter settings. In this paper, an enhanced elite archive mutation strategy with self-adaption parameter adjustment (EAMSADE) is proposed to raise DE’s performance. The population’s diversity and the individual’s difference are considered by this paper to enhance the algorithm’s convergence property. EAMSADE amends the DE/rand/1 strategy by means of enhanced elite archive mutation and modifies parameters (crossover rate and scaling factor) adaptively which is based on quantitative analysis of individual variability and population diversity. To confirm the proposed EAMSADE’s performance, a suit of 21 benchmark functions from IEEE CEC2005 are utilized to carry out the experiment. The outcome of the experiment confirms that the proposed EAMSADE has got an overall improvement on convergence performance and global search ability compared to the other four amended DE.

Keywords

Differential evolution Improve elite archive Self-adaptive parameter adjustment 

Notes

Acknowledgements

The authors acknowledge the National Key Research and Development Project of China (No. 2016YFC1401800) and the Scientific Research Project of NUDT (No. ZK16-03-46, No. ZK16-03-31).

References

  1. 1.
    Gong, Y.J., Chen, W.N., Zhan, Z.H., Zhang, J., Li, Y., Zhang, Q.: Distributed evolutionary algorithms and their models: a survey of the state-of-the-art. Appl. Soft Comput. 34, 286–300 (2015)CrossRefGoogle Scholar
  2. 2.
    Wang, L., Yang, B., Orchard, J.: Particle swarm optimization using dynamic tournament topology. Appl. Soft Comput. 48, 584–596 (2016)CrossRefGoogle Scholar
  3. 3.
    Li, H., Demeulemeester, E.: A genetic algorithm for the robust resource leveling problem. J. Sched. 19(1), 43–60 (2016)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution—an updated survey. Swarm Evolut. Comput. 27, 1–30 (2016)CrossRefGoogle Scholar
  5. 5.
    Xu, Y., Wang, L., Wang, S.Y., Liu, M.: An effective teaching–learning-based optimization algorithm for the flexible job-shop scheduling problem with fuzzy processing time. Neurocomputing 148, 260–268 (2015)CrossRefGoogle Scholar
  6. 6.
    Mallol-Poyato, R., Jiménez-Fernández, S., Díaz-Villar, P., Salcedo-Sanz, S.: Joint optimization of a microgrid’s structure design and its operation using a two-steps evolutionary algorithm. Energy 94, 775–785 (2016)CrossRefGoogle Scholar
  7. 7.
    Prado, R.S., Silva, R.C.P., Guimarães, F.G., Neto, O.M.: A new differential evolution based metaheuristic for discrete optimization. Int. J. Nat. Comput. Res. 1(2), 15–32 (2017)CrossRefGoogle Scholar
  8. 8.
    Liu, B., Aliakbarian, H., Ma, Z., Vandenbosch, G.A.E., Gielen, G., Excell, P.: An efficient method for antenna design optimization based on evolutionary computation and machine learning techniques. IEEE Trans. Antennas Propag. 62(1), 7–18 (2014)CrossRefGoogle Scholar
  9. 9.
    Tang, L., Zhao, Y., Liu, J.: An improved differential evolution algorithm for practical dynamic scheduling in steelmaking-continuous casting production. IEEE Trans. Evolut. Comput. 18(2), 209–225 (2014)CrossRefGoogle Scholar
  10. 10.
    Liu, B., Aliakbarian, H., Ma, Z., Vandenbosch, G.A.E., Gielen, G., Excell, P.: An efficient method for antenna design optimization based on evolutionary computation and machine learning techniques. IEEE Trans. Antennas Propag. 62(1), 7–18 (2014)CrossRefGoogle Scholar
  11. 11.
    Nama, S., Saha, A.K.: A new hybrid differential evolution algorithm with self-adaptation for function optimization. Appl. Intell. 14, 1–15 (2017)Google Scholar
  12. 12.
    Elsayed, S.M., Sarker, R.A., Essam, D.L.: Training and testing a self-adaptive multi-operator evolutionary algorithm for constrained optimization. Appl. Soft Comput. J. 26(3), 515–522 (2015)CrossRefGoogle Scholar
  13. 13.
    Elsayed, S., Sarker, R., Coello, C.C., Ray, T.: Adaptation of operators and continuous control parameters in differential evolution for constrained optimization. Soft Comput. 3, 1–22 (2017)Google Scholar
  14. 14.
    Wu, G., Mallipeddi, R., Suganthan, P.N., Wang, R., Chen, H.: Differential evolution with multi-population based ensemble of mutation strategies. Inf. Sci. 329, 329–345 (2016)CrossRefGoogle Scholar
  15. 15.
    Draa, A., Bouzoubia, S., Boukhalfa, I.: A sinusoidal differential evolution algorithm for numerical optimisation. Appl. Soft Comput. 27(27), 99–126 (2015)CrossRefGoogle Scholar
  16. 16.
    Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM. 45(3), 1–33 (2013)MATHGoogle Scholar
  17. 17.
    Sun, G., Peng, J., Zhao, R.: Differential evolution with individual-dependent and dynamic parameter adjustment. Soft Comput. 2, 1–27 (2017)Google Scholar
  18. 18.
    Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evolut. Comput. 10(6), 646–657 (2006)CrossRefGoogle Scholar
  19. 19.
    Zou, D., Wu, J., Gao, L., Li, S.: A modified differential evolution algorithm for unconstrained optimization problems. Neurocomputing 120(6), 469–481 (2013)CrossRefGoogle Scholar
  20. 20.
    Zhang, J., Sanderson, A.C.: Jade: adaptive differential evolution with optional external archive. IEEE Trans. Evolut. Comput. 13(5), 945–958 (2009)CrossRefGoogle Scholar
  21. 21.
    Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans. Evolut. Comput. 15(1), 55–66 (2011)CrossRefGoogle Scholar
  22. 22.
    Yi, W., Gao, L., Li, X., Zhou, Y.: A new differential evolution algorithm with a hybrid mutation operator and self-adapting control parameters for global optimization problems. Appl. Intell. 42(4), 642–660 (2015)CrossRefGoogle Scholar
  23. 23.
    Wang, S., Li, Y., Yang, H.: Self-adaptive differential evolution algorithm with improved mutation mode. Soft Comput. 6, 1–15 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Marine Information EngineeringNational University of Defense TechnologyChangshaChina

Personalised recommendations