Advertisement

QoS supported adaptive and multichannel MAC protocol in vehicular ad-hoc network

  • K. Kannan
  • M. Devaraju
Article
  • 54 Downloads

Abstract

Based on IEEE 802.11p and IEEE 1609.4 protocols, vehicular ad hoc network (VANETs) transmit safety and non-safety packets through multichannel. Due to the increase in usage of various infotainment applications, the quality-of-service (QoS) is not met in VANETs resulting in high congestion over transmission. To ensure QoS in safety, transport efficiency and infotainment applications, we proposed a multichannel approach with optimal minimum contention window (CW) technique named as reinforcement learning and multichannel MAC protocol (RL- M -MAC). In this paper, an algorithm is proposed to select the channel for transmission. Proposed RL-M-MAC protocol uses conditional Markov chain technique to identify the optimal CW value. Theoretical performance analysis and extensive simulation results shows that RL-M-MAC protocol can support QoS services with lower collision probability, higher throughput, and high fairness.

Keywords

Vehicular ad hoc network MAC protocol QoS DCF WAVE Optimal content window Unsupervised learning 

References

  1. 1.
    Ma, X., Zhang, J., Yin, X., Trivedi, K.S.: Design and analysis of a robust broadcast scheme for VANET safety-related services. IEEE Trans. Vehi. Technol. 61(1), 46–61 (2012)CrossRefGoogle Scholar
  2. 2.
    Rene, S., Exposito, E., Gineste, M., Alins, J., Esparza, O.: Multipath TCP architecture for infotainment multimedia applications in vehicular networks. In: Proceedings of the 81st IEEE Vehicular Technology Conference (VTC Spring), Glasgow, UK, 11–14 May, pp. 1–5 (2015)Google Scholar
  3. 3.
    Su, H., Zhang, X.: Clustering-based multichannel MAC protocols for QoS provisionings over vehicular ad hoc networks. IEEE Trans. Veh. Technol. 56, 3309–3323 (2007)CrossRefGoogle Scholar
  4. 4.
    Han, C., Dianati, M., Tafazolli, R., Liu, X., Shen, X.: A novel distributed asynchronous multi-channel MAC scheme for large-scale vehicular ad hoc networks. IEEE Trans. Veh. Technol. 61, 3125–3138 (2012)CrossRefGoogle Scholar
  5. 5.
    Bradai, A., Ahmed, T.: ReViV: selective rebroadcast mechanism for video streaming over VANET. In: Proceedings of the 79th IEEE Vehicular Technology Conference (VTC Spring), Seoul, Korea, 18–21 May, pp. 1–6 (2014)Google Scholar
  6. 6.
    Syed, I., Roh, B.-H.: Adaptive backoff algorithm for contention window for dense IEEE 802.11 WLANs. Mobile Inf. Syst. (2016) http://dx.doi.org/10.1155/2016/8967281.
  7. 7.
    Barrachina, J., Garrido, P., Fogue, M., et al.: A V2I-based real-time traffic density estimation system in urban scenarios. Wirel. Personal Commun. 83(1), 259–280 (2015)CrossRefGoogle Scholar
  8. 8.
    Pan, S., Borcea.: DIVERT: a distributed vehicular traffic re-routing system for congestion avoidance. IEEE Trans. Mob. Comput. 32, 19–27 (2016)Google Scholar
  9. 9.
    Kim, T.H., Hong, W.K., Kim, H.C., Lee, Y.D.: An effective data dissemination in vehicular ad-hoc network. In: Proceedings of the In International Conference on Information Networking, pp. 295–304. Springer, Berlin (2007)Google Scholar
  10. 10.
    Chen, Y.-S., Lin, Y.-W., Lee, S.-L.: A mobicast routing protocol in vehicular ad-hoc networks. Mob. Netw. Appl. 15(1), 20–35 (2010)CrossRefGoogle Scholar
  11. 11.
    Chen, Y.-S., Lin, Y.-W.: A mobicast routing protocol with carry-and-forward in vehicular ad hoc networks. Int. J. Commun. Syst. 27(10), 1416–1440 (2014)CrossRefGoogle Scholar
  12. 12.
    Karagiannis, G., Altintas, O., Ekici, E., Heijenk, G., Jarupan, B., Lin, K., Weil, T.: Vehicular networking: a survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Commun. Surv. Tutor. 13, 584–616 (2011)CrossRefGoogle Scholar
  13. 13.
    Hadded, M., Muhlethaler, P., Laouiti, A., Zagrouba, R., Saidane, L.A.: TDMA-based MAC protocols for vehicular ad hoc networks: a survey, qualitative analysis, and open research issues. IEEE Commun. Surv. Tutor. 17, 2461–2492 (2015)CrossRefGoogle Scholar
  14. 14.
    Zheng, K., Zheng, Q., Chatzimisios, P., Xiang, W., Zhou, Y.: Heterogeneous vehicular networking: a survey on architecture, challenges, and solutions. IEEE Commun. Surv. Tutor. 17, 2377–2396 (2015)CrossRefGoogle Scholar
  15. 15.
    Amadeo, M., Campolo, C., Molinaro, A.: Enhancing IEEE 802.11p/WAVE to provide infotainment applications in VANETs. Ad Hoc Netw. 10, 253–269 (2012)CrossRefGoogle Scholar
  16. 16.
    Wang, Q., Leng, S., Zhang, Y., Fu, H.: A QoS supported multi-channel MAC for vehicular ad hoc networks. In: Proceedings of the 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring), Yokohama, Japan, 15–18 May 2011; pp. 1–5.Google Scholar
  17. 17.
    Rene, S., Exposito, E., Gineste, M., Alins, J., Esparza, O.: Multipath TCP architecture for infotainment multimedia applications in vehicular networks. In: Proceedings of the 81st IEEE Vehicular Technology Conference (VTC Spring), Glasgow, UK, 11–14 May 2015; pp. 1–5.Google Scholar
  18. 18.
    Su, H., Zhang, X.: Clustering-based multichannel MAC protocols for QoS provisionings over vehicular ad hoc networks. IEEE Trans. Veh. Technol. 56, 3309–3323 (2007)CrossRefGoogle Scholar
  19. 19.
    Han, C., Dianati, M., Tafazolli, R., Liu, X., Shen, X.: A novel distributed asynchronous multi-channel MAC scheme for large-scale vehicular ad hoc networks. IEEE Trans. Veh. Technol. 61, 3125–3138 (2012)CrossRefGoogle Scholar
  20. 20.
    Lu, N., Ji, Y., Liu, F., Wang, X.: A dedicated multi-channel MAC protocol design for VANET with adaptive broadcasting (2010).  https://doi.org/10.1109/WCNC.2010.5506242
  21. 21.
    Xie, X., Wang, F., Li, K., Zhang, P., Wang, H.: Improvement of multi-channel MAC protocol for dense VANET with directional antennas. IEEE WCNC (2009).  https://doi.org/10.1109/WCNC.2009.4917750
  22. 22.
    IEEE Standard for Wireless Access in Vehicular Environments (WAVE)–multi-channel operation; IEEE Std. 1609.4-2010 (Revision of IEEE Std. 1609.4-2006), vol 30, pp.1-89. IEEE, New York (2011)Google Scholar
  23. 23.
    So, H.-S.W., Nguyen, G., Walrand, J.: Practical synchronization techniques for multi-channel MAC. In: Proceedings of the 12th Annual International Conference on Mobile Computing and Networking, Los Angeles, CA, USA, 24–29 September 2006; pp. 134–145.Google Scholar
  24. 24.
    Sthapit, P., Jae-Young, P.: Mobility support in IEEE 802.15. 4 based mobile sensor network. IEICE Trans. Commun. 97, 555–563 (2014)CrossRefGoogle Scholar
  25. 25.
    Torabi, N., Leung, V.C.M.: Realization of public m-health service in license-free spectrum. IEEE J. Biomed. Health Inform. 17, 19–29 (2013)CrossRefGoogle Scholar
  26. 26.
    Hang, S., Xi, Z.: Design and analysis of a multi-channel cognitive MAC protocol for dynamic access spectrum networks. In: Proceedings of the IEEE Military Communications Conference (MILCOM 2008), San Diego, CA, USA, 16–19 November 2008; pp. 1–7.Google Scholar
  27. 27.
    Liang, X., Balasingham, I.: Performance analysis of the IEEE 802.15.4 based ECG monitoring network. In: Proceedings of the IASTED Wireless and Optical Communications Conference (WOC 2007), Montreal, QC, Canada, 30 May–1 June, pp. 99–104 (2007)Google Scholar
  28. 28.
    Cavallari, R., Martelli, F., Rosini, R., Buratti, C., Verdone, R.: A survey on wireless body area networks: technologies and design challenges. IEEE Commun. Surv. Tutor. 16, 1635–1657 (2014)CrossRefGoogle Scholar
  29. 29.
    Le, T.T., Moh, S.: Interference mitigation schemes for wireless body area sensor. Sensors 15, 13805–13838 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.RMK College of Engineering and TechnologyChennaiIndia
  2. 2.Karpaga Vinayaga College of Engineering and TechnologyChennaiIndia

Personalised recommendations