Advertisement

A smart power saving protocol for IoT with wireless energy harvesting technique

  • S. Madhurikkha
  • R. Sabitha
Article
  • 57 Downloads

Abstract

Internet of things (IoT) is the wireless network of physical devices that are capable of sensing the environment. In order to prolong the network lifetime of the IoT nodes called sensor nodes, an effective energy consumption protocols to adapt the wireless sensor network. This paper explores in depth the energy harvesting techniques, and proposes a cluster algorithm with energy harvesting technique to improve energy and throughput of the network. The proposed algorithm implements the creation of clusters with cluster-head selection protocol and we have reduced the number of iteration required for electing the cluster head. HEED algorithm has been enhanced with an energy harvesting algorithm using wireless charging technique. Proposed algorithm is to select the appropriate channel in the multi-channel system. Simulation results shows that the proposed algorithm has better adaptability to ubiquitous environments than existing clustering algorithm in prolonging the network lifetime.

Keywords

Ubiquitous network Clustering technique CS-HEED Energy harvesting Wireless power transfer Cluster head selection IoT Wireless body area network 

References

  1. 1.
    Hosni, I., Hamdi, N.: Distributed cooperative spectrum sensing with wireless sensor network cluster architecture for smart grid communications. Int. J. Sens. Netw. (IJSNET) 24(2), 118–124 (2017)CrossRefGoogle Scholar
  2. 2.
    Rani, S., Talwar, R., Malhotra, J., Ahmed, S.H., Sarkar, M., Song, H.: A novel scheme for an energy efficient internet of things based on wireless sensor networks. Sensors 15, 28603–28626 (2015)CrossRefGoogle Scholar
  3. 3.
    Mishra, B.K., Nayak, N.R., Rath, A.K.: Assessment of basic clustering techniques using teaching-learning-based optimisation. Int. J. Knowl. Eng. Soft Data Paradig. 5(2), 106–122 (2016)CrossRefGoogle Scholar
  4. 4.
    Talpur, M.S.H., Bhuiyan, M.Z.A., Wang, G.: Shared-node IoT network architecture with ubiquitous homomorphic encryption for healthcare monitoring. Int. J. Embed. Syst. 7(1), 43–54 (2015)CrossRefGoogle Scholar
  5. 5.
    Al-Busaidi, A.M., Khriji, L.: Wearable wireless medical sensors toward standards, safety and intelligence. Int. J. Biomed. Eng. Technol. 14(2), 119–147 (2014)CrossRefGoogle Scholar
  6. 6.
    Fan, Z.: Dynamic transmission power switch for fast data collection in duty-cycled sensor networks. Int. J. Ad Hoc Ubiquitous Comput. 24(3), 173–182 (2017)CrossRefGoogle Scholar
  7. 7.
    El-Din, A.E., Ramadan, R.A.: Smart secure HEED for WSN’. Int. J. Sens. Netw. 16(1), 48–60 (2014)CrossRefGoogle Scholar
  8. 8.
    Singla, C., Kaushal, S.: An efficient game theoretic based computation offloading framework for network optimisation in mobile cloud IoT systems. Int. J. Adv. Intell. Paradig. 9(2/3), 186–203 (2017)CrossRefGoogle Scholar
  9. 9.
    Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd Hawaii International Conference on System Sciences, Maui, Hawaii, 4–7 January 2000Google Scholar
  10. 10.
    Younis, O., Fahmy, S.: HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Trans. Mobile. Comput. 3, 366–379 (2004)CrossRefGoogle Scholar
  11. 11.
    Smaragdakis, G., Matta, I., Bestavros, A.: SEP: a stable election protocol for clustered heterogeneous wireless sensor networks. In: Proceedings of the Second International Workshop on Sensor and Actor Network Protocols and Applications, Boston, MA, 22–24 August 2004Google Scholar
  12. 12.
    Handy, M.J., Haase, M., Timmermann, D.: Low energy adaptive clustering hierarchy with deterministic cluster-head selection. In: Proceedings of the 4th International Workshop on Mobile and Wireless Communications Network, Stockholm, Sweden, 9–10 September 2002, pp. 368–372Google Scholar
  13. 13.
    Zhu, Q., Wang, M., Qing, L.: Design of a distributed energy-efficient clustering algorithm for heterogeneous wireless sensor networks. Comput. Commun. 12, 2230–2237 (2006)Google Scholar
  14. 14.
    Ding, P., Holliday, J., Celik, A.: Distributed energy-efficient hierarchical clustering for wireless sensor networks. In: Proceedings of the First IEEE International Conference on Distributed Computing in Sensor Systems, Marina del Rey, CA, 30 June–1 July 2005, pp. 322–339Google Scholar
  15. 15.
    Yasotha, B., Sasikala, T.: Intrusion detection system for mitigating attacks using energy monitoring in wireless sensor networks. Int. J. Mobile Netw. Des. Innov. 6(4), 219–227 (2016)CrossRefGoogle Scholar
  16. 16.
    Pais, S.C.: The high energy electromagnetic field generator. Int. J. Space Sci. Eng. 3(4), 312–317 (2015)CrossRefGoogle Scholar
  17. 17.
    Recebli, Z., Gedik, E., Selimli, S.: Electrical field effect on three-dimensional magnetohydrodynamic pipe flow: a CFD study. Prog. Comput. Fluid Dyn. Int. J. 16(4), 261–270 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Angelopoulos, C.M., Nikoletseas, S., Raptis, T.P., Raptopoulos, C., Vasilakis, F.: Improving sensor network performance with wireless energy transfer. Int. J. Ad Hoc Ubiquitous Comput. 20(3), 159–171 (2015)CrossRefGoogle Scholar
  19. 19.
    Shu, W., Wang, W., Wang, Y.: A novel energy-efficient resource allocation algorithm based on immune lonal optimization for green cloud computing. EURASIP J. Wirel. Commun. Netw. 64, 1–9 (2014)Google Scholar
  20. 20.
    Liu, J., Sun, Q., Li, S.: Topology control algorithm based on directional antenna in wireless ad hoc networks. J. Northeast. Univ. (Nat. Sci.) 33, 1257–1260 (2012)Google Scholar
  21. 21.
    Halke, R., Kulkarni, V.A.: En-LEACH routing protocol for wireless sensor network. Int. J. Eng. Res. Appl. 2, 2099–2102 (2012)Google Scholar
  22. 22.
    Rozman, M., Fernando, M., Adebisi, B., Rabie, K.M., Kharel, R., Ikpehai, A., Gacanin, H.: Combined conformal strongly-coupled magnetic resonance for efficient wireless power transfer. Wirel. Power Transf. 10(4), 498 (2016)Google Scholar
  23. 23.
    Ns-2 network simulator. http://www.isi.edu/nsnam/ns/2008.282
  24. 24.
  25. 25.
    Marc Greis’ Tutorial for the UCB/LBNL/VINT Network Simulator “ns”284. http://web.uct.ac.za/depts/commnetwork/tutorial_ns_full.pdf2008.285
  26. 26.
  27. 27.
    Shin, J., Suh, C.: CREEC: chain routing with even energy consumption. J. Commun. Netw. 13, 17–25 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jeppiaar Engineering CollegeSathyabama UniversityChennaiIndia
  2. 2.Information Technology DepartmentJeppiaar Engineering CollegeChennaiIndia

Personalised recommendations