Skip to main content
Log in

Mathematical modeling and simulated annealing algorithm for spatial layout problem

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The spatial layout of the port industrial zone problem is a core issue in port industrial zone planning, and it directly affects the actual effects of the port industrial zone. Firstly, considering that existing port industrial zone planning lacks in methods of quantitative analysis, this paper constructs a Mathematical model based on multi-objective programming, and the optimal scale of various industries of port industrial zone is obtained. Secondly, the paper takes the maximum dependence degree of port as objective function by using systematic layout planning tools, and solves the spatial layout of the port industrial zone. Finally, by taking Binhai Port industrial zone of China as an example, a port industrial zone spatial layout model is constructed and solved through simulated annealing algorithm. The optimal spatial layout program for Binhai Port industrial zone of China was obtained, which verifies the feasibility and accuracy of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Verhetsel, A., Kessels, R., Goos, P., Zijlstra, T., Blomme, N., Cant, J.: Location of logistics companies: a stated preference study to disentangle the impact of accessibility. J. Transp. Geogr. 42(42), 110–121 (2015)

    Article  Google Scholar 

  2. Fujita, M.: Thunen and the new economic geography. Reg. Sci. Urban Econ. 42(6), 907–912 (2000)

    Article  Google Scholar 

  3. Wang, J.J., Slack, B.: The evolution of a regional container port system: the Pearl River delta. J. Transp. Geogr. 8(4), 263–275 (2000)

    Article  Google Scholar 

  4. Imai, A., Sun, X., Nishimura, E., Papadimitriou, S.: Berth allocation in a container port: using a continuous location space approach. Transp. Res. Part B 39(3), 199–221 (2005)

    Article  Google Scholar 

  5. Zhang, H., Zhao, X.: Quantitative analysis of organizational behavior of container shipping in the upper and middle reaches of the Yangtze River based on hub-and-spoke network. J. Coast. Res. 73, 119–125 (2015)

    Article  Google Scholar 

  6. Baird, A.J.: Port privatisation: objectives, process and financing. Compos. B Eng. 45(1), 995–1000 (2000)

    Google Scholar 

  7. Rimmer, P.J.: A conceptual framework for examining urban and regional transport needs in Southeast Asia. Pac. View 18, 133–147 (1977)

    Article  Google Scholar 

  8. Slack, Brain: Intermodal transportation in North America and the development of inland load centers. Prof. Geogr. 42(1), 72–83 (2010)

    Article  Google Scholar 

  9. Feng, X., Jiang, L., Zhang, Y., Wang, W.: Optimization of capacity of ports within a regional port system. Transp. Res. Record J. Transp. Res. Board 2222, 10–16 (2011)

    Article  Google Scholar 

  10. Martin, Jeffrey, Thomas, Brian J.: The container terminal community. Marit. Policy Manag. 28(3), 279–292 (2001)

    Article  Google Scholar 

  11. Notteboom, T.E.: Container shipping and ports: an overview. Rev. Netw. Econ. 3(2), 86–106 (2004)

    Article  Google Scholar 

  12. Ma, Y., Luan, W., Zhang, R., Feng, P.: Research on the size and layout of iron ore wharf in Bohai Rim region based on Freight Demand. Int. Conf. Logist. Eng. Manag. Comput. Sci. 2015(117), 846–850 (2015)

    Google Scholar 

  13. Cao, C., Li, C., Yang, Q., Liu, Y., Qu, T.: A novel multi-objective programming model of relief distribution for sustainable disaster supply chain in large-scale natural disasters. J. Clean. Prod. 174, 1422–1435 (2018)

    Article  Google Scholar 

  14. Tsao, Y.C., Thanh, V.V., Lu, J.C., Yu, V.: Designing sustainable supply chain networks under uncertain environments: fuzzy multi-objective programming. J. Clean. Prod. 174, 1550–1565 (2017)

    Article  Google Scholar 

  15. Capitanescu, F., Marvuglia, A., Benetto, E., Ahmadi, A., Tiruta-Barna, L.: Linear programming-based directed local search for expensive multi-objective optimization problems: application to drinking water production plants. Eur. J. Oper. Res. 262(1), 322–334 (2017)

    Article  MathSciNet  Google Scholar 

  16. Xue, L., Villalobos, J.R.: A multi-objective optimization primary planning model for a poe (port-of-entry) inspection. J. Transp. Secur. 5(3), 217–237 (2012)

    Article  Google Scholar 

  17. Wang, B., Yang, T.: Multi-objective optimization model of export and transit containers storage in a transshipment port yard. Appl. Mech. Mater. 220–223, 272–278 (2012)

    Google Scholar 

  18. Cano, A., Ventura, S., Cios, K.J.: Multi-objective genetic programming for feature extraction and data visualization. Soft. Comput. 21(8), 2069–2089 (2017)

    Article  Google Scholar 

  19. Lachhwani, K.: Modified FGP approach for multi-level multi objective linear fractional programming problems. Appl. Math. Comput. 266, 1038–1049 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Rao, R.V., Patel, V.: Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm. Appl. Math. Model. 37(3), 1147–1162 (2013)

    Article  MathSciNet  Google Scholar 

  21. Hui, S.: Multi-objective optimization for hydraulic hybrid vehicle based on adaptive simulated annealing genetic algorithm. Eng. Appl. Artif. Intell. 23(1), 27–33 (2010)

    Article  Google Scholar 

  22. Cakir, B., Altiparmak, F., Dengiz, B.: Multi-objective optimization of a stochastic assembly line balancing: a hybrid simulated annealing algorithm. Comput. Ind. Eng. 60(3), 376–384 (2011)

    Article  Google Scholar 

  23. Montreuil, B.: A modelling framework for integrating layout design and flow network design. Material Handling 90, pp. 95–115. Springer, Berlin (1991)

    Google Scholar 

  24. Meller, R.D., Chen, W., Sherali, H.D.: Applying the sequence-pair representation to optimal facility layout designs. Operat. Res. Lett. 35(5), 651–659 (2007)

    Article  MathSciNet  Google Scholar 

  25. Amar, S. H., & Abouabdellah, A. (2017). Facility layout planning problem: Effectiveness and reliability evaluation system layout designs. In: International Conference on System Reliability and Science (pp. 110-114).

  26. Ning, X., Lam, K.C., Lam, C.K.: Dynamic construction site layout planning using max-min ant system. Autom. Constr. 19(1), 55–65 (2010)

    Article  Google Scholar 

  27. Kim, B.I., Jeong, S., Shin, J., Koo, J., Chae, J., Lee, S.: A layout- and data-driven generic simulation model for semiconductor fabs. IEEE Trans. Semicond. Manuf. 22(2), 225–231 (2009)

    Article  Google Scholar 

  28. Kulturel-Konak, S., Konak, A.: A simulated annealing algorithm with a dynamic temperature schedule for the cyclic facility layout problem. In: Informs Computing Society Conference (2015)

  29. Gkegkas, T., Farmaki, P., Stylianidis, E.: Spatial planning system’s structure focus on urban development: urban layout planning, plot arrangement-compensation acts, urban planning implementation acts. Spatial, Design, Landscape & Socio-economic Dimensions, Changing Cities (2017)

    Google Scholar 

  30. Mavridou, T.D., Pardalos, P.M.: Simulated annealing and genetic algorithms for the facility layout problem: a survey. Comput. Optim. Appl. 7(1), 111–126 (1997)

    Article  MathSciNet  Google Scholar 

  31. Allahyari, M.Z., Azab, A., Allahyari, M.Z., Azab, A.: Mathematical modeling and multi-start search simulated annealing for unequal-area facility layout problem. Expert Syst. Appl. 91, 46–62 (2017)

    Article  Google Scholar 

  32. Hu, C., Ren, G., Liu, C., Li, M., Jie, W.: A spark-based genetic algorithm for sensor placement in large scale drinking water distribution systems. Clust. Comput. 3, 1–11 (2017)

    Google Scholar 

Download references

Acknowledgement

Research for this paper was funded by the National Natural Science Foundation of China (No. 41401120), Fundamental Research Funds for the Central Universities (Project No. 2014B00214), and College Students’ innovation and entrepreneurship training program project (Project No. 2017102941063). The authors thank every teacher of research institute, for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liupeng Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Ji, J., Lu, Y. et al. Mathematical modeling and simulated annealing algorithm for spatial layout problem. Cluster Comput 22 (Suppl 3), 6383–6391 (2019). https://doi.org/10.1007/s10586-018-2137-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-2137-8

Keywords

Navigation