Skip to main content
Log in

Map matching algorithm: curve simplification for Frechet distance computing and precise navigation on road network using RTKLIB

  • Published:
Cluster Computing Aims and scope Submit manuscript


Map matching is the process which work for location measurement and also find out appropriate route for smooth traveling on the road network, but map matching accuracy fully depends on GPS trajectory data and electronic map of the road network. Unfortunately, GPS data is not accurate because, it’s through weak GPS signaling and low quality GPS devices. So, it is difficult to calculate accurate location of movements.This work provides, a map mapping algorithm for simplifying appropriate path, including curves on road network and also, we proposed Frechet distance computing algorithm with road Preliminaries for network simplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others


  1. Singh, S., Sharma, R.M.: Some aspects of coverage awareness in wireless sensor networks. Procedia Comput. Sci. 70, 160–165 (2015)

    Article  Google Scholar 

  2. Gupta, S.K., Poonia, R.C., Vijay, R.: A comparative study of mobile wireless networks. Orient. J. Comput. Sci. Technol. 4(2), 387–392 (2011)

    Google Scholar 

  3. Wang, L., Da Xu, L., Bi, Z., Xu, Y.: Data cleaning for RFID and WSN integration. IEEE Trans. Ind. Inf. 10(1), 408–418 (2014)

    Article  Google Scholar 

  4. Fang, S., Xu, L., Pei, H., Liu, Y., Liu, Z., Zhu, Y., et al.: An integrated approach to snowmelt flood forecasting in water resource management. IEEE Trans. Ind. Inf. 10(1), 548–558 (2014)

    Article  Google Scholar 

  5. Ding, Z., Güting, R.H.: Uncertainty management for network constrained moving objects. In: International Conference on Database and Expert Systems Applications, August 2004, pp. 411–421. Springer, Berlin (2004)

    Google Scholar 

  6. Xu, J., Guo, L., Ding, Z., Sun, X., Liu, C.: Traffic aware route planning in dynamic road networks. In: International Conference on Database Systems for Advanced Applications, April 2012, pp. 576–591. Springer, Berlin

    Chapter  Google Scholar 

  7. Liu, K., Deng, K., Ding, Z., Li, M., Zhou, X.: Moir/mt: monitoring large-scale road network traffic in real-time. Proc. VLDB Endow. 2(2), 1538–1541 (2009)

    Article  Google Scholar 

  8. Sharma, K.P., Poonia, R.C.: Review study of navigation systems for Indian Regional Navigation Satellite System (IRNSS). In: Soft Computing: Theories and Applications, pp. 735–742. Springer, Singapore (2018)

    Google Scholar 

  9. Lou, Y., Zhang, C., Zheng, Y., Xie, X., Wang, W., Huang, Y.: Map-matching for low-sampling-rate GPS trajectories. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, November 2009, pp. 352–361. ACM, New York (2009)

  10. Quddus, M.A., Ochieng, W.Y., Noland, R.B.: Current map-matching algorithms for transport applications: state-of-the art and future research directions. Transp. Res. Part C 15(5), 312–328 (2007)

    Article  Google Scholar 

  11. Ding, Z., Deng, K.: Collecting and managing network-matched trajectories of moving objects in databases. In: International Conference on Database and Expert Systems Applications, August 2011, pp. 270–279. Springer, Berlin (2011)

    Google Scholar 

  12. Finogeev, A.G., Finogeev, A.A.: Information attacks and security in wireless sensor networks of industrial SCADA systems. J. Ind. Inf. Integr. 5, 6–16 (2017)

    Google Scholar 

  13. He, W., Yan, G., Da Xu, L.: Developing vehicular data cloud services in the IoT environment. IEEE Trans. Ind. Inf. 10(2), 1587–1595 (2014)

    Article  Google Scholar 

  14. Gupta, S., Poonia, R.C.: Comparative study of cluster and tree based data aggregation techniques in vehicular ad-hoc networks. In: 2016 5th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), September 2016, pp. 431–434

  15. Jiménez, F., Aparicio, F., Estrada, G.: Measurement uncertainty determination and curve-fitting algorithms for development of accurate digital maps for advanced driver assistance systems. Transp. Res. Part C 17(3), 225–239 (2009)

    Article  Google Scholar 

  16. Wenk, C., Salas, R., Pfoser, D.: Addressing the need for map-matching speed: localizing global curve-matching algorithms. In: 18th International Conference on Scientific and Statistical Database Management (SSDBM’06), July 2006, pp. 379–388. IEEE, Vienna (2006)

  17. Alt, H., Knauer, C., Wenk, C.: Comparison of distance measures for planar curves. Algorithmica 38(1), 45–58 (2004)

    Article  MathSciNet  Google Scholar 

  18. Quddus, M.A., Ochieng, W.Y., Zhao, L., Noland, R.B.: A general map matching algorithm for transport telematics applications. GPS Solut. 7(3), 157–167 (2003)

    Article  Google Scholar 

  19. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. Int. J. Comput. Geom. Appl. 5(01–02), 75–91 (1995)

    Article  Google Scholar 

  20. Hummel, B.: Map matching for vehicle guidance. Dynamic and Mobile GIS: Investigating Space and Time, pp. 437–438. CRC Press, Boca Raton (2006)

    Google Scholar 

  21. Quddus, M.A.: High integrity map matching algorithms for advanced transport telematics applications. Doctoral Dissertation, Imperial College London, UK (2006)

  22. Oran, A., et al.: An HMM-based map matching method with cumulative proximity-weight formulation. In: IEEE 2013 International Conference on Connected Vehicles and Expo (ICCVE), pp. 480–485 (2013)

  23. Dabbour, E., Easa, S.M., Abd El Halim, A.O.: Radius requirements for reverse horizontal curves on three-dimensional alignments. J. Transp. Eng. 130(5), 610–620 (2004)

    Article  Google Scholar 

  24. Zhong, S., Bian, L.: A location-centric network approach to analyzing epidemic dynamics. Ann. Am. Assoc. Geogr. 106(2), 480–488 (2016)

    Google Scholar 

  25. Tang, B., Yiu, M. L., Mouratidis, K., Wang, K.: Efficient motif discovery in spatial trajectories using discrete Fréchet distance. In: Proceedings of the 20th International Conference on Extending Database Technology (EDBT), pp. 378–389 (2017)

  26. Agarwal, P.K., Avraham, R.B., Kaplan, H., Sharir, M.: Computing the discrete Fréchet distance in subquadratic time. SIAM J. Comput. 43(2), 429–449 (2014)

    Article  MathSciNet  Google Scholar 

  27. Kenefic, R.J.: Track clustering Using Fréchet distance and minimum description length. J. Aerosp. Inf. Syst. 11(8), 512–524 (2014)

    Google Scholar 

  28. Zheng, Y.: Trajectory data mining: an overview. ACM Trans. Intell. Syst. Technol. (TIST) 6(3), 29 (2015)

    Google Scholar 

  29. Hong, L., Chen, G.: Segment-based stereo matching using graph cuts. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004 (CVPR 2004), June 2004, vol. 1, pp. I-I (2004)

  30. Accessed 23 Jan 2017

  31. Encarnacion, I.V., Tiglao, N.M.C.: RTKLIB-based GPS localization for multipath mitigation in ITS applications. In: IEEE 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), July 2016, pp. 1077–1082 (2016)

  32. Weber, G., Dettmering, D., Gebhard, H.: Networked transport of RTCM via internet protocol (NTRIP). In: A Window on the Future of Geodesy, pp. 60–64. Springer, Berlin (2005)

  33. Quddus, M.A., et al.: A high accuracy fuzzy logic based map matching algorithm for road transport. J. Intell. Transp. Syst. 10(3), 103–115 (2006)

    Article  Google Scholar 

  34. Wang, D., et al.: A general sequential Monte Carlo method based optimal wavelet filter: a Bayesian approach for extracting bearing fault features. Mech. Syst. Signal Process. 52, 293–308 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Kanta Prasad Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K.P., Pooniaa, R.C. & Sunda, S. Map matching algorithm: curve simplification for Frechet distance computing and precise navigation on road network using RTKLIB. Cluster Comput 22 (Suppl 6), 13351–13359 (2019).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: