Skip to main content

The application of near-infrared reflectance hyperspectral imaging for the detection and extraction of bloodstains

Abstract

Blood is not only the traces of the murder scene but also the evidence, has a very important role in the acquisition of criminal evidence and forensic identification. However, the conventional testing methodology being currently deployed in bloodstain identification may destruct the human DNA. Some investigators used the method is undeserved, often regret in the exploration of the scene. From this point of view, efficient non-destructive technology for quickly identifying bloodstain is an emerging issue in this field. In this article, a method is proposed for nondestructive testing of identifying blood stains, and design a blood model named blood band inequality model to extract blood from eight kinds of suspected blood. The validity of the model was verified by the theory and experiment. Extraction efficiency of blood is as high as 94.71%, and the omission rate is only 5.29%. Experiments proved hyperspectral imaging can be used for the non-contact detection, identification of blood stains and the new model is effective in the extraction of blood.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Li, B., Beveridge, P., O’Hare, W.T., et al.: The estimation of the age of a blood stain using reflectance spectroscopy with a microspectrophotometer, spectral pre-processing and linear discriminant analysis. Forensic Sci. Int. 212(1–3), 198–204 (2011)

    Google Scholar 

  2. Zhang, T., Zhao, Y., Wei, D., et al.: Fiber-optic michelson accelerometer based on frequency modulation. IEEE Photonics Technol. Lett. 26(23), 2361–2364 (2014)

    Article  Google Scholar 

  3. Metodiev, M., Thompson, K., Alston, C., et al.: Recessive mutations in TRMT10C, cause defects in mitochondrial RNA processing and multiple respiratory chain deficiencies. Am. J. Hum. Genet. 98(5), 993 (2016)

    Article  Google Scholar 

  4. Bauer, M., Polzin, S., Patzelt, D.: Quantification of RNA degradation by semi-quantitative duplex and competitive RT-PCR: a possible indicator of the age of bloodstains? Forensic Sci. Int. 138(1–3), 94–103 (2003)

    Article  Google Scholar 

  5. Leng, Y., Sun, C., Xu, X., et al.: Employing unlabeled data to improve the classification performance of SVM, and its application in audio event classification. Knowl. Based Syst. 98(C), 117–129 (2016)

    Article  Google Scholar 

  6. Pan, J., Li, L., Chen, B., et al.: Numerical simulation of evolution features of the atmospheric-pressure CF 4, plasma generated by the pulsed dielectric barrier discharge. Eur. Phys. J. D 70(6), 1–8 (2016)

    Article  Google Scholar 

  7. Almeida, J.P., Glesse, N., Bonorino, C.: Effect of presumptive tests reagents on human blood confirmatory tests and DNA analysis using real time polymerase chain reaction. Forensic Sci. Int. 206(1–3), 58 (2011)

    Article  Google Scholar 

  8. Ma, F.K., Jiang, D.P., Su, L.B., et al.: Spectral properties and highly efficient continuous-wave laser operation in Nd-doped Sr1-xYxF2+xcrystals. Optics Lett. 41(3), 501 (2016)

    Article  Google Scholar 

  9. Ma, W., Qian, X., Wang, J., et al.: Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2 single crystals. Sci. Rep. 6, 36635 (2016)

    Article  Google Scholar 

  10. Wagner, J.H., Miskelly, G.M.: Background correction in forensic photography. I. Photography of blood under conditions of non-uniform illumination or variable substrate color-theoretical aspects and proof of concept. J. Forensic Sci. 48(3), 593–603 (2003)

    Google Scholar 

  11. Li, B., Beveridge, P., O’Hare, W.T., Islam, M.: The application of visible wavelength reflectance hyperspectral imaging for the detection and identification of blood stains. Sci. Justice 54, 432–438 (2014)

    Article  Google Scholar 

  12. Zhang, Y.J., Sun, Y.P., Wang, C.K.: Optical limiting and dynamical two-photon absorption of porphyrin with ruthenium outlying complexes for a picosecond pulse train. Eur. Phys. J. D 70(1), 1–7 (2016)

    Article  Google Scholar 

  13. Zhao, L.N., Liu, J., Gao, Y.M., et al.: Nonlinear optical properties of a two-dimensional nonlinear photonic quasicrystal based on second order cascaded nonlinearities. J. Mod. Optics 63(3), 239–244 (2016)

    Article  Google Scholar 

  14. Cadd, S., Li, B., Beveridge, P., et al.: The non-contact detection and identification of blood stained fingerprints using visible wavelength reflectance hyperspectral imaging: part 1. Sci. Justice J. Forensic Sci. Soc. 56(3), 181 (2016)

    Article  Google Scholar 

  15. Edelman, G.J., Leeuwen, T.G., Aalders, M.C.: Visualization of latent blood stains using visible reflectance hyperspectral imaging and chemometrics. J. Forensic Sci. 60(s1), S188 (2015)

    Article  Google Scholar 

  16. Han, Y.J., Guo, C.S., Rong, Z.Y., et al.: Radial Hilbert transform with the spatially variable half-wave plate. Optics Lett. 38(23), 5169 (2013)

    Article  Google Scholar 

  17. Chen, L.M., Yan, W.C., Li, D.Z., et al.: Bright betatron X-ray radiation from a laser-driven-clustering gas target. Sci. Rep. 3(5), 1912 (2013)

    Article  Google Scholar 

  18. Li, B., Beveridge, P., O’Hare, W.T., et al.: The age estimation of blood stains up to 30 days old using visible wavelength hyperspectral image analysis and linear discriminant analysis. Sci. Justice 53(3), 270–277 (2013)

    Article  Google Scholar 

  19. Fan, X., Liu, J., Liu, J., et al.: Mid-infrared self-Q-switched Er, Pr:CaF2 diode-pumped laser. Optics Lett. 41(20), 4660 (2016)

    Article  Google Scholar 

  20. Zijistra, W.G., Buursma, A., Roest, W.P.M.D.: CLIN.CHEM. Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin. Clin. Chem. 37(9), 1633–1638 (1991)

    Google Scholar 

  21. Yang, B., Yang, M., Plaza, A., et al.: Dual-mode FPGA implementation of target and anomaly detection algorithms for real-time hyperspectral imaging. IEEE J. Sel. Topics Appl. Earth Observations Rem. Sens. 8(6(SI)), 2950–2961 (2015)

    Article  Google Scholar 

  22. Edelman, G., Manti, V., van Ruth, S.M., et al.: Identification and age estimation of blood stains on colored backgrounds by near infrared spectroscopy. Forensic Sci. Int. 220(1–3), 239 (2012)

    Article  Google Scholar 

  23. Binzoni, T., Humeauheurtier, A., Abraham, P., et al.: Blood perfusion values of laser speckle contrast imaging and laser Doppler flowmetry: is a direct comparison possible. IEEE Trans. Biomed. Eng. 60(5), 1259–1265 (2013)

    Article  Google Scholar 

  24. Motto-Ros, V., Negre, E., Pelascini, F., et al.: Precise alignment of the collection fiber assisted by real-time plasma imaging in laser-induced breakdown spectroscopy. Spectrochim. Acta B Atomic Spectrosc. 92(2), 60–69 (2014)

    Article  Google Scholar 

  25. Laine, L.M., Biddau, M., Byron, O., et al.: Biochemical and structural characterization of the apicoplast dihydrolipoamide dehydrogenase of Plasmodium falciparum. Biosci. Rep. 35(1), 1–15 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The research work is supported by National Natural Science foundation of China under Grant No. 81400285. And the authors would also like to gratefully acknowledge the support from the key research and development foundation of Shandong Province under Grant No. 2016GGX101016.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuefeng Zhao, Xiaofei Li or Jingjing Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Hu, N., Wang, Y. et al. The application of near-infrared reflectance hyperspectral imaging for the detection and extraction of bloodstains. Cluster Comput 22 (Suppl 4), 8453–8461 (2019). https://doi.org/10.1007/s10586-018-1869-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-1869-9

Keywords

  • Hyperspectral imaging
  • Blood stains extraction
  • BBIM