Skip to main content
Log in

Indicator-based multi-objective adaptive bacterial foraging algorithm for RFID network planning

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

This work develops a novel indicator-based multi-objective bacterial colony foraging algorithm (I-MOBCA) for complex multi-objective or many-objective optimization problems. The main idea of I-MOBCA is to develop an adaptive and cooperative model by combining bacterial foraging, adaptive searching, cell-to-cell communication and preference indicator-based measure strategies. In this algorithm, each bacterium can adopt its run-length unit to appropriately balance exploitation and exploration states, and the quality of position or solution is calculated on the basis of the binary quality indicator to determine the Pareto dominance relation. Our algorithm uses Pareto concept and preference indicator-based measure to determine the non-dominated solutions in each generation, which can essentially reduce the computation complexity. With several mathematical benchmark functions, I-MOBCA is proved to have significantly better performance over compared algorithms for solving some complex multi-objective optimization problems. Then the proposed I-MOBCA is used to solve three-objective RFID network planning problem. Simulation results show that I-MOBCA proves to be superior for planning RFID networks than compared algorithms in terms of optimization accuracy and computation robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. Lect. Notes Comput. Sci. 3242, 832–842 (2004)

    Article  Google Scholar 

  2. Jia, L., Cheng, D., Chiu, M.S.: Pareto-optimal solutions based multi-objective particle swarm optimization control for batch processes. Neural Comput. Appl. 21(6), 1107–1116 (2012)

    Article  Google Scholar 

  3. Buche, D., Schraudolph, N.N., Koumoutsakos, P.: Accelerating evolutionary algorithms with Gaussian process fitness function models. IEEE Trans. Syst. Man Cybern. Part C 35(2), 183–194 (2005)

    Article  Google Scholar 

  4. Yang, X.S.: Swarm intelligence based algorithms: a critical analysis. Evol. Intell. 7(1), 17–28 (2014)

    Article  Google Scholar 

  5. Akay, B.: Synchronous and asynchronous Pareto-based multi-objective Artificial Bee Colony algorithms. J. Glob. Optim. 57(2), 415–445 (2013)

    Article  MathSciNet  Google Scholar 

  6. Gong, M., Jiao, L., Du, H., et al.: Multiobjective immune algorithm with nondominated neighbor-based selection. Evol. Comput. 16(2), 225–255 (2008)

    Article  Google Scholar 

  7. Muller, S.D., Marchetto, J., Airaghi, S., et al.: Optimization based on bacterial chemotaxis. IEEE Trans. Evol. Comput. 6(1), 16–29 (2002)

    Article  Google Scholar 

  8. Bermejo, E., Cordón, O., Damas, S., et al.: A comparative study on the application of advanced bacterial foraging models to image registration. Inf. Sci. 295, 160–181 (2015)

    Article  MathSciNet  Google Scholar 

  9. Yi, J., Huang, D., Fu, S., et al.: Multi-objective bacterial foraging optimization algorithm based on parallel cell entropy for aluminum electrolysis production process. IEEE Trans. Ind. Electron. 63(4), 2488–2500 (2016)

    Article  Google Scholar 

  10. Deb, K., Pratap, A., Agarwal, S., et al.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  11. Kim, M., Hiroyasu, T., Miki, M., et al.: SPEA2+: improving the performance of the strength Pareto evolutionary algorithm 2. Lect. Notes Comput. Sci. 3242(4), 742–751 (2004)

    Article  Google Scholar 

  12. Verma, O.P., Hanmandlu, M., Sultania, A.K., et al.: A novel fuzzy system for edge detection in noisy image using bacterial foraging. Multidimens. Syst. Signal Process. 24(1), 181–198 (2013)

    Article  MathSciNet  Google Scholar 

  13. Gao, L., Barrett, D., Chen, Y., et al.: A systems model combining process-based simulation and multi-objective optimisation for strategic management of mine water. Environ. Modell. Softw. 60(7), 250–264 (2014)

    Article  Google Scholar 

  14. Li, Y., Liu, F.: A novel immune clonal algorithm. IEEE Trans. Evol. Comput. 16(1), 35–50 (2012)

    Article  Google Scholar 

  15. Sundaresan, S., Doss, R., Zhou, W.: A secure search protocol based on Quadratic Residues for EPC Class-1 Gen-2 UHF RFID tag. In: Proceedings 2012 IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pp. 30–35 (2012)

  16. Cho, J., Shim, Y., Kwon, T., et al.: SARIF: a novel framework for integrating wireless sensor and RFID networks. IEEE Wirel. Commun. 14(6), 50–56 (2007)

    Article  Google Scholar 

  17. Guo, D.L., Xiang, Q., Li, Z.H.: Hybrid intelligent optimization approach for RFID network planning. Appl. Mech. Mater. 596(596), 230–233 (2014)

    Article  Google Scholar 

  18. Hsu, C.H., Chen, S.C., Yu, C.H., et al.: Alleviating reader collision problem in mobile RFID networks. Pers. Ubiquitous Comput. 13(7), 489–497 (2009)

    Article  Google Scholar 

  19. Chen, H., Zhu, Y., Hu, K., et al.: RFID network planning using a multi-swarm optimizer. J. Netw. Comput. Appl. 34(3), 888–901 (2011)

    Article  Google Scholar 

  20. Gandino, F., Ferrero, R., Montrucchio, B., et al.: Probabilistic DCS: an RFID reader-to-reader anti-collision protocol. J. Netw. Comput. Appl. 34(3), 821–832 (2011)

    Article  Google Scholar 

  21. Tetta, C., Ghigo, E., Silengo, L., et al.: Extracellular vesicles as an emerging mechanism of cell-to-cell communication. Endocrine 44(1), 11–19 (2013)

    Article  Google Scholar 

  22. Zhong, Y.B., Xiang, Y., Liu, H.L.: A multi-objective artificial bee colony algorithm based on division of the searching space. Appl. Intell. 41(4), 987–1011 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National key Research and Development Plan of China under Grant No.(2016YFB1100501, 2017YFB1103603, 2017YFB1103603), National Natural Science Foundation of China under Grant No. (61772365, 41772123, 61602343, 51607122, 51575158, 51378350 and 51305167), Tianjin Province Science and Technology Projects under Grant No. (16ZLZDZF00150, 17JCQNJC04500, 17JCYBJC15100) and Basic Scientific Research Business Funded Projects of Tianjin (TJPUZK20170128, TJPUZK20170129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaochun Yuan.

Appendix

Appendix

See Table 5.

Table 5 Pseudocode of the I-MOBFA algorithm

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, C., Hanning, C., Shen, J. et al. Indicator-based multi-objective adaptive bacterial foraging algorithm for RFID network planning. Cluster Comput 22 (Suppl 5), 12649–12657 (2019). https://doi.org/10.1007/s10586-018-1715-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-1715-0

Keywords

Navigation