A novel parallel image encryption algorithm based on chaos


With rapid technology development, data sizes are increasing and more powerful hardware structures are needed to process these data. An alternative solution for this process is to parallel the transactions to be realized, to provide the time gain, increase the efficiency and reduce the transaction costs. In this article, a new chaos-based parallel encryption algorithm design is presented to meet this requirements. In the study, a new random number generator (RNG) and chaos-based parallel encryption algorithm are developed. Using developed RNG, confusion and encryption of pixel in images have been realized. Also parallel computing has been used to increase security and speedup the encryption. With the new parallel encryption algorithm, the security and performance tests of the image encryption application and the encryption process have been made. In addition, the evaluated performance of the parallel computing is described in speedup and efficiency.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    Davies, D.W: Some regular properties of the ‘data encryption standard’algorithm. In: Advances in Cryptology, pp. 89–96. Springer (1983)

  2. 2.

    Daemen, J., Rijmen, V.: The design of Rijndael: AES-the advanced encryption standard. Springer Science & Business Media (2013)

  3. 3.

    Daemen, J., Govaerts, R., Vandewalle, J.: Weak keys for idea. In: Annual International Cryptology Conference, pp. 224–231. Springer (1993)

  4. 4.

    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Zhaopin, S., Zhang, G., Jiang, J.: Multimedia security: a survey of chaos-based encryption technology. In: Multimedia-A Multidisciplinary Approach to Complex Issues, InTech (2012)

  6. 6.

    Shannon, C.E.: Communication theory of secrecy systems. Bell Labs Tech. J. 28(4), 656–715 (1949)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 16(08), 2129–2151 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Jakimoski, G., Kocarev, L.: Chaos and cryptography: block encryption ciphers based on chaotic maps. IEEE Trans. Circuits Syst. I 48(2), 163–169 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Amigo, J.M., Kocarev, L., Szczepanski, J.: Theory and practice of chaotic cryptography. Phys. Lett. A 366(3), 211–216 (2007)

    MATH  Article  Google Scholar 

  10. 10.

    Li, C., Liu, Y., Xie, T., Chen, M.Z.Q.: Breaking a novel image encryption scheme based on improved hyperchaotic sequences. Nonlinear Dyn. 73(3), 2083–2089 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Wang, Y., Wong, K.-W., Liao, X., Chen, G.: A new chaos-based fast image encryption algorithm. Appl. Soft Comput. 11(1), 514–522 (2011)

    Article  Google Scholar 

  12. 12.

    Hua, Z., Zhou, Y.: Image encryption using 2d logistic-adjusted-sine map. Inf. Sci. 339, 237–253 (2016)

    Article  Google Scholar 

  13. 13.

    Bakhache, B., Ghazal, J.M., El Assad, S.: Improvement of the security of zigbee by a new chaotic algorithm. IEEE Syst. J. 8(4), 1024–1033 (2014)

    Article  Google Scholar 

  14. 14.

    Çavuşoğlu, Ü., Zengin, A., Pehlivan, I., Kaçar, S.: A novel approach for strong s-box generation algorithm design based on chaotic scaled zhongtang system. Nonlinear Dyn. 87(2), 1081–1094 (2017)

    MATH  Article  Google Scholar 

  15. 15.

    Gao, T., Chen, Z.: Image encryption based on a new total shuffling algorithm. Chaos Solitons Fractals 38(1), 213–220 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Tang, Y., Wang, Z., Fang, J.: Image encryption using chaotic coupled map lattices with time-varying delays. Commun. Nonlinear Sci. Numer. Simul. 15(9), 2456–2468 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Usama, M., Khan, M.K., Alghathbar, K., Lee, C.: Chaos-based secure satellite imagery cryptosystem. Comput. Math. Appl. 60(2), 326–337 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Xie, E.Y., Li, C., Yu, S., Lü, J.: On the cryptanalysis of fridrich’s chaotic image encryption scheme. Signal Process. 132, 150–154 (2017)

    Article  Google Scholar 

  19. 19.

    Li, C., Lin, D., Lü, J.: Cryptanalyzing an image-scrambling encryption algorithm of pixel bits. IEEE Multimed. 24(3), 64–71 (2017)

    Article  Google Scholar 

  20. 20.

    Zhou, Q., Wong, K., Liao, X., Xiang, T., Yue, H.: Parallel image encryption algorithm based on discretized chaotic map. Chaos Solitons Fractals 38(4), 1081–1092 (2008)

    Article  Google Scholar 

  21. 21.

    Mirzaei, O., Yaghoobi, M., Irani, H.: A new image encryption method: parallel sub-image encryption with hyper chaos. Nonlinear Dyn. 67(1), 557–566 (2012)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Wang, Y., Han, C., Liu, Y.: A parallel encryption algorithm for color images based on lorenz chaotic sequences. In: Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress on, 2, pp. 9744–9747. IEEE, (2006)

  23. 23.

    Liao, Xi, Lai, S., Zhou, Q.: A novel image encryption algorithm based on self-adaptive wave transmission. Signal Process. 90(9), 2714–2722 (2010)

    MATH  Article  Google Scholar 

  24. 24.

    Liang, H.Y., Gu, X.S.: A novel chaos optimization algorithm based on parallel computing. Huadong Ligong Daxue Xuebao (Ziran Kexue Ban) 30(4), 450–453 (2004)

    Google Scholar 

  25. 25.

    Yuan, X., Zhao, J., Yang, Y., Wang, Y.: Hybrid parallel chaos optimization algorithm with harmony search algorithm. Appl. Soft Comput. 17, 12–22 (2014)

    Article  Google Scholar 

  26. 26.

    Huang, R., Rhee, K.H., Uchida, S.: A parallel image encryption method based on compressive sensing. Multimed. Tools Appl. 72(1), 71–93 (2014)

    Article  Google Scholar 

  27. 27.

    Rostami, M.J., Shahba, A., Saryazdi, S., Nezamabadi-pour, H.: A novel parallel image encryption with chaotic windows based on logistic map. Comput. Electr. Eng. 62, 384–400 (2017)

    Article  Google Scholar 

  28. 28.

    Yuan, H.M., Liu, Y., Lin, T., Ting, H., Gong, L.H.: A new parallel image cryptosystem based on 5d hyper-chaotic system. Signal Process. 52, 87–96 (2017)

    Google Scholar 

  29. 29.

    Guiqiang, H., Xiao, D., Wang, Y., Xiang, T.: An image coding scheme using parallel compressive sensing for simultaneous compression-encryption applications. J. Vis. Commun. Image Represent. 44, 116–127 (2017)

    Article  Google Scholar 

  30. 30.

    Liu, J., Bai, T., Shen, X., Dou, S., Lin, C., Cai, J.: Parallel encryption for multi-channel images based on an optical joint transform correlator. Opt. Commun. 396, 174–184 (2017)

    Article  Google Scholar 

  31. 31.

    Kaçar, S.: Analog circuit and microcontroller based rng application of a new easy realizable 4d chaotic system. Optik-Int. J. Light Electron Opt. 127(20), 9551–9561 (2016)

    Article  Google Scholar 

  32. 32.

    Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical report, Booz-Allen and Hamilton Inc Mclean Va (2001)

  33. 33.

    Rauber, T., Rünger, G.: Parallel Programming: For multicore and Cluster Systems. Springer Science & Business Media, New York (2013)

    Google Scholar 

  34. 34.

    Grama, A.: Introduction to Parallel Computing. Pearson Education, London (2003)

    Google Scholar 

  35. 35.

    Pareek, N.K., Patidar, V., Sud, K.K.: Image encryption using chaotic logistic map. Image Vis. Comput. 24(9), 926–934 (2006)

    Article  Google Scholar 

  36. 36.

    Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. In: Advances in Cryptology-CRYPTO, 90, pp. 2–21. Springer (1991)

  37. 37.

    Chen, G., Mao, Y., Chui, C.K.: A symmetric image encryption scheme based on 3d chaotic cat maps. Chaos Solitons Fractals 21(3), 749–761 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Musa, M.A., Schaefer, E.F., Wedig, S.: A simplified aes algorithm and its linear and differential cryptanalyses. Cryptologia 27(2), 148–177 (2003)

    MATH  Article  Google Scholar 

  39. 39.

    Jolfaei, A., Mirghadri, A.: A new approach to measure quality of image encryption. Int. J. Comput. Netw. Secur. 2(8), 38–44 (2010)

    Google Scholar 

  40. 40.

    Khan, M., Shah, T.: An efficient chaotic image encryption scheme. Neural Comput. Appl. 26(5), 1137–1148 (2015)

    Article  Google Scholar 

  41. 41.

    Belazi, A., Khan, M., El-Latif, A.A.A., Belghith, S.: Efficient cryptosystem approaches: S-boxes and permutation–substitution-based encryption. Nonlinear Dyn. 87(1), 337–361 (2017)

    Article  Google Scholar 

  42. 42.

    Khan, M.: A novel image encryption scheme based on multiple chaotic S-boxes. Nonlinear Dyn. 82(1–2), 527–533 (2015)

    MathSciNet  Article  Google Scholar 

  43. 43.

    Hua, Z., Zhou, Y., Pun, C.M., Chen, C.L.P.: 2d sine logistic modulation map for image encryption. Inf. Sci. 297, 80–94 (2015)

    Article  Google Scholar 

  44. 44.

    Wang, X., Liu, L., Zhang, Y.: A novel chaotic block image encryption algorithm based on dynamic random growth technique. Opt. Lasers Eng. 66, 10–18 (2015)

    Article  Google Scholar 

  45. 45.

    Wang, X., Guo, K.: A new image alternate encryption algorithm based on chaotic map. Nonlinear Dyn. 76(4), 1943–1950 (2014)

    MATH  Article  Google Scholar 

  46. 46.

    Zhang, X., Mao, Y., Zhao, Z.: An efficient chaotic image encryption based on alternate circular s-boxes. Nonlinear Dyn. 78(1), 359–369 (2014)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ünal Çavuşoğlu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Çavuşoğlu, Ü., Kaçar, S. A novel parallel image encryption algorithm based on chaos. Cluster Comput 22, 1211–1223 (2019). https://doi.org/10.1007/s10586-018-02895-w

Download citation


  • Image encryption
  • Parallel algorithm
  • Chaos
  • RNG