Advertisement

A light weight FFT based enciphering system for extending the lifetime of mobile ad hoc networks

Article
  • 95 Downloads

Abstract

Message security is most imperative in mobile ad hoc networks because of the applications in circumstances such as, disaster rescue, crisis management and military. Yet, due to the absence of a fixed framework and no centralized administration implementation of security is a testing prospect. Also certain attention must be paid to energy utilization constraints while designing a security mechanism for a mobile ad hoc network. This paper presents a method which considers aforementioned constraints and suggests a non-interactive light weight symmetric key cryptosystem using fast Fourier transform based hashing and generalised symbol table based polyalphabetic substitution. The key computation and secure hashing mechanism strengthen the proposed technique and is proved to be resilient enough against the non-legitimate users with less overhead to participating nodes. The analysis on the proposed technique is performed on various sets of data with different sized network to comprehend the level of security achieved.

Keywords

GST Energy Symmetric key encryption FFT Polyalphabetic substitution Light weight encryption 

References

  1. 1.
    Rivest, R.L., Shamir, A., Adleman, L.: Method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48, 203–209 (1987)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Elgamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31, 469–472 (1985)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Sanzgiri, K., Laflamme, D., Dahill, B., Levine, B.N., Shields, C., Belding-Royer, E.M.: Authenticated routing for ad hoc networks. IEEE J. Sel. Areas Commun. 23, 598–609 (2005)CrossRefGoogle Scholar
  5. 5.
    Coppersmith, D.: The data encryption standard (DES) and its strength against attacks. IBM J. Res. Dev. 38, 243–250 (1994)CrossRefMATHGoogle Scholar
  6. 6.
    Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4, 3–72 (1991)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Yang, Y.: Broadcast encryption based non-interactive key distribution in MANETs. J. Comput. Syst. Sci. 80, 533–545 (2014)CrossRefMATHGoogle Scholar
  8. 8.
    Ramkumar, M., Memon, N.: An efficient key predistribution scheme for ad hoc network security. IEEE J. Sel. Areas Commun. 23, 611–621 (2005)CrossRefGoogle Scholar
  9. 9.
    Yin, Y., Gan, Y., Wen, H., Li, T.: A symmetric key exchange protocol based on virtual S-box. China Commun. 11, 46–52 (2014)CrossRefGoogle Scholar
  10. 10.
    Peterson, H., Michels, M.: Cryptanalysis and improvements of signcryption schemes. IEE Proc. Comput. Digit. Techn. 145, 149–151 (1998)CrossRefGoogle Scholar
  11. 11.
    Yavuz, A.A., Alagöz, F., Anarim, E.: A new multi-tier adaptive military MANET security protocol using hybrid cryptography and signcryption. Turk. J. Electr. Eng. Comput. Sci. 18, 1–21 (2010)Google Scholar
  12. 12.
    Enos, G., Zheng, Y.: An ID-based signcryption scheme with compartmented secret sharing for unsigncryption. Inf. Process. Lett. 115, 128–133 (2015)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kumar, G.P., Murmu, A.K., Parajuli, B., Choudhury, P.: MULET: A multi language encryption technique. In: IEEE 2010 Information Technology—New Generations Conference, Las Vegas, NV, pp. 779–782. IEEE (2010)Google Scholar
  14. 14.
    Battey, M., Parakh, A.: An efficient quasigroup block cipher. Wirel. Pers. Commun. 73, 63–76 (2013)CrossRefGoogle Scholar
  15. 15.
    Echchaachoui, A., Choukri, A., Habbani, A., Elkoutbi, M.: Asymmetric and dynamic encryption for routing security in MANETs. IEEE 2014 Multimedia Computing and Systems Conference, Marrakech, pp. 825–830. IEEE, Morocco (2014)Google Scholar
  16. 16.
    Ramanarayana, K., Jacob, L.: Secure routing in integrated mobile ad hoc network (MANET)-internet. In: IEEE 2007 Security. Privacy and Trust in Pervasive and Ubiquitous Computing Workshop, Istanbul, Turkey, pp. 19–24. IEEE (2007)Google Scholar
  17. 17.
    Chen, J., Lim, H.W., Ling, S., Wang, H., Wee, H.: Shorter identity-based encryption via asymmetric pairings. Des. Code Cryptogr. 73, 911–947 (2014)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Eissa, T., Razak, S.A., Ngadi, M.D.A.: Towards providing a new lightweight authentication and encryption scheme for MANET. Wirel. Netw. 17, 833–842 (2011)CrossRefGoogle Scholar
  19. 19.
    John, S.P., Samuel, P.: Self-organized key management with trusted certificate exchange in MANET. Ain Shams Eng. J. 6, 161–170 (2015)CrossRefGoogle Scholar
  20. 20.
    Dabideen, S., Garcia-Luna-Aceves, J.J.: Secure routing in MANETs using local times. Wirel. Netw. 18, 811–826 (2012)CrossRefGoogle Scholar
  21. 21.
    Kulkarni, G., Patel, B., Laxkar, P.: Time stamp based cross layer MANET security protocol. In: IEEE 2013 Computational Intelligence and Information Technology Conference, Mumbai, India, pp. 191–199. IEEE (2013)Google Scholar
  22. 22.
    Kong, J., Zerfos, P., Luo, H., Lu, S., Zhang, L.: Providing robust and ubiquitous security support for mobile ad-hoc networks. In: IEEE 2001 Network Protocols Conference, Riverside, CA, pp. 251–260. IEEE (2001)Google Scholar
  23. 23.
    Jarecki, S., Saxena, N.: On the insecurity of proactive RSA in the URSA mobile ad hoc network access control protocol. IEEE Trans. Inf. Forensics Secur. 5, 739–749 (2010)CrossRefGoogle Scholar
  24. 24.
    Singh, Y.K.: A simple, fast and secure cipher. J. Eng. Appl. Sci. 6, 61–69 (2011)Google Scholar
  25. 25.
    Barr, T.H., Simoson, A.J.: Twisting the keyword length from a Vigenere cipher. Cryptologia 39, 335–341 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of ComputingSASTRA UniversityThanjavurIndia

Personalised recommendations