Skip to main content
Log in

RETRACTED ARTICLE: An automated and intelligent Parkinson disease monitoring system using wearable computing and cloud technology

  • Published:
Cluster Computing Aims and scope Submit manuscript

This article was retracted on 06 December 2022

This article has been updated

Abstract

This paper exhibits the outline and advancement of a pervasive remote monitoring system for the Parkinson’s disease (PD) patients. The proposed system gathers various PD related information such as voice samples, gait information etc. and would empower in-home monitoring of early PD symptoms. We accomplished this objective by utilizing various wearable sensors technology, mobile computing system, Internet, cloud computing technologies. Such an incorporated framework guarantees the compelling and effective utilization of data gathered for evaluating early PD symptom’s as well as identifies critical PD severity levels. In particular, the proposed system can evaluate PD patients’ voice disorders or Dysphonia and thus enables doctors to detect patient’s PD symptoms or severity levels. Trial comes about demonstrate that our proposed system achieves very high accuracy for detecting PD symptoms as compared to existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. De Lau, L.M., Breteler, M.M.: Epidemiology of Parkinson’s disease. Lancet Neurol. 5(6), 525–35 (2006)

    Article  Google Scholar 

  2. Rispens, S.M., van Schooten, K.S., Pijnappels, M., Daffertshofer, A., Beek, P.J., van Dieën, J.H.: Do extreme values of daily-life gait characteristics provide more information about fall risk than median values? JMIR Res. Protoc. 4(1), e4 (2015). https://doi.org/10.2196/resprot.3931

  3. Cancela, J., Pastorino, M., Moreno, E., Waldmeyer, M.A.: A mobile monitoring tool for the automatic activity recognition and its application for Parkinson’s disease rehabilitation. In: World Congress on Medical Physics and Biomedical Engineering, June 7–12, 2015, Toronto, Canada, pp. 1457–1460. Springer, New York (2015)

  4. Cancela, J., Pastorino, M., Arredondo, M.T., Nikita, K.S., Villagra, F., Pastor, M.A.: Feasibility study of a wearable system based on a wireless body area network for gait assessment in Parkinson’s disease patients. Sensors 14(3), 4618–4633 (2014)

    Article  Google Scholar 

  5. Caldara, M., Comotti, D., Galizzi, M., Locatelli, P., Re, V., Alimonti, D., Poloni, M., Rizzetti, M.C.: A novel body sensor network for Parkinson’s disease patients rehabilitation assessment. In: 2014 11th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 81–86. IEEE (2014)

  6. Patel, S., Chen, B.R., Buckley, T., Rednic, R., McClure, D., Tarsy, D., Shih, L., Dy, J., Welsh, M., Bonato, P.: Home monitoring of patients with Parkinson’s disease via wearable technology and a web-based application. In: 2010 Annual International Conference of the IEEE on Engineering in Medicine and Biology Society (EMBC), pp. 4411–4414. IEEE (2010)

  7. Tzallas, A.T., Tsipouras, M.G., Rigas, G., Tsalikakis, D.G., Karvounis, E.C., Chondrogiorgi, M., Psomadellis, F., Cancela, J., Pastorino, M., Waldmeyer, M.T.A., Konitsiotis, S.: PERFORM: a system for monitoring, assessment and management of patients with Parkinson’s disease. Sensors 14(11), 21329–21357 (2014)

    Article  Google Scholar 

  8. Chen, B.R., Patel, S., Buckley, T., Rednic, R., McClure, D.J., Shih, L., Tarsy, D., Welsh, M., Bonato, P.: A web-based system for home monitoring of patients with Parkinson’s disease using wearable sensors. IEEE Trans. Biomed. Eng. 58(3), 831–836 (2011)

    Article  Google Scholar 

  9. Patel, S., Lorincz, K., Hughes, R., Huggins, N., Growdon, J., Standaert, D., et al.: Monitoring motor fluctuations in patients with Parkinson’s disease using wearable sensors. IEEE Trans. Inf. Technol. Biomed. 13(6), 864–873 (2009)

    Article  Google Scholar 

  10. Bächlin, M., Plotnik, M., Roggen, D., Inbar, N., Giladi, N., Hausdorff, J., et al.: Parkinsons disease patients perspective on context aware wearable technology for auditive assistance. In: 2009 3rd International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 1–8 (2009)

  11. Cancela, J., Pansera, M., Arredondo, M.T., Estrada, J.J., Pastorino, M., PastorSanz, L., Villalar, J.L.: A comprehensive motor symptom monitoring and management system: the bradykinesia case. In: Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2010, pp. 1008–1011 (2010)

  12. Bonato, P., Sherrill, D.M., Standaert, D.G., Salles, S.S., Akay, M.: Data mining techniques to detect motor fluctuations in Parkinson’s disease. In Conference of the IEEE Engineering in Medicine and Biology Society, vol. 7, pp. 4766–4769 (2004)

  13. Cunningham, L., Mason, S., Nugent, C., Moore, G., Finlay, D., Craig, D.: Homebased monitoring and assessment of Parkinson’s disease. IEEE Trans. Inf Technol. Biomed. 15(1), 47–53 (2011)

    Article  Google Scholar 

  14. Keijsers Noël, L.W., Horstink Martin, W.I.M., Gielen Stan, C.A.M.: Ambulatory motor assessment in Parkinson’s disease. Mov. Disord. 21(1), 34–44 (2006)

    Article  Google Scholar 

  15. Rodríguez-Molinero, A., Samà, A., Pérez-Martínez, D.A., López, C.P., Romagosa, J., Bayés, À., Sanz, P., Calopa, M., Gálvez-Barrón, C., de Mingo, E., Martín, D.R.: Validation of a portable device for mapping motor and gait disturbances in Parkinson’s disease. JMIR Mhealth Uhealth 3(1), e9 (2015). https://doi.org/10.2196/mhealth.3321

  16. Pan, D., Dhall, R., Lieberman, A., Petitti, D.B.: A mobile cloud-based Parkinson’s disease assessment system for home-based monitoring. JMIR Mhealth Uhealth 3(1), e29 (2015). https://doi.org/10.2196/mhealth.3956

  17. Liddle, J., Ireland, D., McBride, S.J., Brauer, S.G., Hall, L.M., Ding, H., Karunanithi, M., Hodges, P.W., Theodoros, D., Silburn, P.A., Chenery, H.J.: Measuring the lifespace of people with Parkinson’s disease using smartphones: proof of principle. JMIR Mhealth Uhealth 2(1), e13 (2014). https://doi.org/10.2196/mhealth.2799

  18. Fontecha, J., Hervás, R., Bravo, J., Navarro, F.J.: A mobile and ubiquitous approach for supporting frailty assessment in elderly people. J. Med. Internet Res. 15(9), e197 (2013). https://doi.org/10.2196/jmir.2529

  19. Eskofier, B.M., Lee, S.I., Baron, M., Simon, A., Martindale, C.F., Gaßner, H., Klucken, J.: An overview of smart shoes in the internet of health things: gait and mobility assessment in health promotion and disease monitoring. Appl. Sci. 7(10), 986 (2017)

    Article  Google Scholar 

  20. Salarian, A., Russmann, H., Vingerhoets, F.J.G., Burkhard, P.R., Aminian, K., Wider, C.: Ambulatory monitoring of physical activities in patients with Parkinson’s disease. IEEE Trans. Biomed. Eng. 54(12), 2296–2299 (2007)

    Article  Google Scholar 

  21. Al Mamun, K.A., Alhussein, M., Sailunaz, K., Islam, M.S.: Cloud based framework for Parkinson’s disease diagnosis and monitoring system for remote healthcare applications. Future Gener. Comput. Syst. 31(66), 36–47 (2017)

    Article  Google Scholar 

  22. Tsiouris, K.M., Gatsios, D., Rigas, G., Miljkovic, D., Seljak, B.K., Bohanec, M., Arredondo, M.T., Antonini, A., Konitsiotis, S., Koutsouris, D.D., Fotiadis, D.I.: PD_Manager: an mHealth platform for Parkinson’s disease patient management. Healthc. Technol. Lett. 4(3), 102–108 (2017)

    Article  Google Scholar 

  23. van den Noort, J.C., Verhagen, R., van Dijk, K.J., Veltink, P.H., Vos, M.C., de Bie, R.M., Bour, L.J., Heida, C.T.: Quantification of hand motor symptoms in Parkinson’s disease: A proof-of-principle study using inertial and force sensors. Ann. Biomed. Eng. 45(10), 2423–2436 (2017)

    Article  Google Scholar 

  24. Lin, B.S., Chou, N.K., Chong, F.C., Chen, S.J.: RTWPMS: a realtime wireless physiological monitoring system. IEEE Trans. Inf. Technol. Biomed. 10(4), 647–656 (2006)

    Article  Google Scholar 

  25. Jin, Z., Oresko, J., Huang, S., Cheng, A.C.: HeartToGo: a personalized medicine technology for cardiovascular disease prevention and detection. In: Proceedings of the IEEE/NIH LiSSA, Bethesda, 9 Apr 2009, pp. 80–83

  26. Pantelopoulos, A., Bourbakis, N.: A survey on wearable sensorbased systems for health monitoring and prognosis. IEEE Trans. Syst. Man. Cybern. C 40(1), 1–12 (2010). https://doi.org/10.1109/TSMCC.2009.2032660

    Article  Google Scholar 

  27. Galán-Mercant, A., Cuesta-Vargas, A.I.: Differences in trunk accelerometry between frail and nonfrail elderly persons in sit-to stand and stand-to-sit transitions based on a mobile inertial sensor. JMIR Mhealth Uhealth 1(2), e21 (2013). https://doi.org/10.2196/mhealth.2710

  28. Almashaqbeh, G., Hayajneh, T., Vasilakos, A.V., Mohd, B.J.: QoS-aware health monitoring system using cloud-based WBANs. J. Med. Syst. 38(10), 121 (2014)

    Article  Google Scholar 

  29. Hassanalieragh, M., Page, A., Soyata, T., Sharma, G., Aktas, M., Mateos, G., Kantarci, B., Andreescu, S. Health monitoring and management using Internet-of-Things (IoT) sensing with cloud-based processing: Opportunities and challenges. In: 2015 IEEE International Conference on Services Computing (SCC), pp. 285–292. IEEE (2015)

  30. Almogren, A.: Developing a powerful and resilient smart body sensor network through hypercube interconnection. Int. J. Distrib. Sens. Netw. Article Number: 609715, Open Access (2015)

  31. Asuncion, A., Newman, D.: UCI machine learning repository. School of Information and Computer Science, University of California, Irvine. http://mlearn.ics.uci.edu/MLRepository.html (2009)

  32. Singhal, S., Jena, M.: A study on WEKA tool for data preprocessing, classification and clustering. Int. J. Innov. Technol. Explor. Eng. 2(6), 250–253 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group no (RGP-1437-35).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Almogren.

Additional information

This article has been retracted. Please see the retraction notice for more detail:https://doi.org/10.1007/s10586-017-1591-z

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almogren, A. RETRACTED ARTICLE: An automated and intelligent Parkinson disease monitoring system using wearable computing and cloud technology. Cluster Comput 22 (Suppl 1), 2309–2316 (2019). https://doi.org/10.1007/s10586-017-1591-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1591-z

Keywords

Navigation