Skip to main content
Log in

Iterative tighter nonparallel hyperplane support vector clustering with simultaneous feature selection

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel clustering method with feature selection in a synchronized manner, called iterative tighter nonparallel support vector clustering with simultaneous feature selection (IT-NHSVC-SFS). A certain iterative (alternating) optimization strategy for clustering is applied to a learning model with twin hyperplanes, in which two types of regularizers, namely the Euclidean and infinite norms, are introduced to achieve the enhancement of clustering generalization performance and coordinated feature selection. The L-infinite norm actually conducts implicit feature elimination process to reduce clustering noises resulting from irrelevant features, thus guaranteeing clustering accuracy. Meanwhile, since the formulation of the proposed model embodies the large-margin spirit,good generalization can also be ensured.Unlike twin support vector machine and its variants, nonparallel hyperplane SVM (NHSVM) is chosen to be a baseline model,thus only a single quadratic programming problem is needed to solve for the optimal twin hyperplanes, making it convenient to design a synchronized feature selection process in two hyperplanes. Additionally, two more groups of equality constraints are enforced into the original constraint set of NHSVM, thus the inverse operation of two large matrices can be avoided to reduce the computational complexity. Furthermore,the hinge loss function of NHSVM is replaced by the Laplacian loss measure to prevent the premature convergence. Numerical experiments are performed on benchmark datasets to investigate the validity of the proposed algorithm. The experimental results indicate that IT-NHSVC-SFS has better performance than other existing clustering methods mainly in terms of clustering accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hartigan, J.A., Wong, M.A.: A K-means clustering algorithm. Appl. Stat. 28(1), 100–108 (1979)

    MATH  Google Scholar 

  2. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Google Scholar 

  3. Redner, R.A., Walker, H.F.: Mixture densities, maximum likelihood and the EM algorithm. Siam Rev. 26(2), 195–239 (1984)

    MathSciNet  MATH  Google Scholar 

  4. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: International Conference on Neural Information Processing Systems: Natural and Synthetic. MIT Press, pp. 849–856 (2001)

  5. Wang, Y.X., Xu, H.: Noisy sparse subspace clustering. In: International Conference on International Conference on Machine Learning. JMLR.org, p. I-89 (2013)

  6. Hershey, J.R., Chen, Z., Roux, J.L., et al.: Deep clustering: Discriminative embeddings for segmentation and separation. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 31–35 (2015)

  7. Zhang, X., Zhang, X., Liu, H.: Self-adapted multi-task clustering. In: International Joint Conference on Artificial Intelligence. AAAI Press, pp. 2357–2363 (2016)

  8. Zhang, L., Zhang, Q., Du, B., et al.: Adaptive manifold regularized matrix factorization for data clustering. In: Twenty-Sixth International Joint Conference on Artificial Intelligence, pp. 33999–3405 (2017)

  9. Vapnik, V.N.: The nature of statistical learning theory. IEEE Trans. Neural Netw. 38(4), 409 (2002)

    Google Scholar 

  10. Xu, L., Neufeld, J., Larson, B., et al.: Maximum margin clustering. Adv. Neural Inf. Process. Syst. 17, 1537–1544 (2004)

    Google Scholar 

  11. Khemchandani, R., Chandra, S.: Twin support vector machines for pattern classification. IEEE Trans. Pattern Anal. Mach. Intell. 29(5), 905–910 (2007)

    MATH  Google Scholar 

  12. Wang, Z., Shao, Y.H., Bai, L., et al.: Twin support vector machine for clustering. IEEE Trans. Neural Netw. Learn. Syst. 26(10), 2583 (2015)

    MathSciNet  Google Scholar 

  13. Khemchandani, R., Pal, A., Chandra, S.: Fuzzy least squares twin support vector clustering. Neural Compuy. Appl. https://doi.org/10.1007/s00521-016-2468-4 (2016)

    Article  Google Scholar 

  14. Chandrashekar, G., Sahin, F.: A Survey on Feature Selection Methods. Pergamon Press Inc., Oxford (2014)

    Google Scholar 

  15. Guyon, I.: An introduction to variable and feature selection. JMLR.org. (2003)

  16. Maldonado, S., Weber, R.: A wrapper method for feature selection using support vector machines. Inf. Sci. 179(13), 2208–2217 (2009)

    Google Scholar 

  17. Hsu, H.H., Hsieh, C.W., Lu, M.D.: Hybrid feature selection by combining filters and wrappers. Expert Syst. Appl. 38(7), 8144–8150 (2011)

    Google Scholar 

  18. Sebban, M., Nock, R.: A hybrid filter/wrapper approach of feature selection using information theory. Pattern Recogn. 35(4), 835–846 (2002)

    MATH  Google Scholar 

  19. Yang, C.H., Chuang, L.Y., Yang, C.H.: IG-GA: a hybrid filter/wrapper method for feature selection of microarray data. J. Med. Biol. Eng. 30(1), 23–28 (2010)

    Google Scholar 

  20. Bradley, P.S., Mangasarian, O.L.: k-Plane clustering. J. Glob. Optim. 16(1), 23–32 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Yuille, A.L., Rangarajan, A.: The concave–convex procedure. Neural Comput. 15(4), 915 (2003)

    MATH  Google Scholar 

  22. Cheung, P.M., Kwok, J.T.: A regularization framework for multiple-instance learning. In: International Conference. DBLP, pp. 193–200 (2006)

  23. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  24. Deng, N., Tian, Y., Zhang, C.: Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions. Chapman & Hall/CRC, London (2012)

    MATH  Google Scholar 

  25. Shao, Y.H., Zhang, C.H., Wang, X.B., et al.: Improvements on twin support vector machines. IEEE Trans. Neural Netw. 22(6), 962–8 (2011)

    Google Scholar 

  26. Mangasarian, O.L., Musicant, D.R.: Successive overrelaxation for support vector machines. IEEE Trans. Neural Netw. 10(5), 1032–1037 (1999)

    Google Scholar 

  27. Bai, L., Wang, Z., Shao, Y.H., et al.: A novel feature selection method for twin support vector machine. Knowl. Based Syst. 59(2), 1–8 (2014)

    Google Scholar 

  28. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, Hoboken (2001)

    MATH  Google Scholar 

  29. Guyon, I., Weston, J., Barnhill, S., et al.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1–3), 389–422 (2002)

    MATH  Google Scholar 

  30. Yang, Y., Zou, H.: A fast unified algorithm for solving group-lasso penalize learning problems. Stat. Comput. 25(6), 1129–1141 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Moreno-Vega, J.M.: High-dimensional feature selection via feature grouping. Inf. Sci. 326(C), 102–118 (2016)

    MathSciNet  Google Scholar 

  32. Shao, Y.H., Chen, W.J., Deng, N.Y.: Nonparallel hyperplane support vector machine for binary classification problems. Inf. Sci. 263(3), 22–35 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Bradley, P.S., Mangasarian, O.L.: Feature selection via concave minimization and support vector machines. In: Fifteenth International Conference on Machine Learning. Morgan Kaufmann Publishers Inc., pp. 82–90 (1998)

  34. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. 68(1), 49–67 (2006)

    MathSciNet  MATH  Google Scholar 

  35. Zhang, K., Tsang, I.W., Kwok, J.T.: Maximum margin clustering made practical. IEEE Trans. Neural Netw. 20(4), 583–96 (2009)

    Google Scholar 

  36. Schölkopf, B., Smola, A.J.: Learning with kernels. IEEE Trans. Signal Process. 52(8), 2165–2176 (2002)

    MathSciNet  Google Scholar 

  37. Bennett, K.P., Bredensteiner, E.J.: Duality and geometry in SVM classifiers. In: Seventeenth International Conference on Machine Learning. Morgan Kaufmann Publishers Inc., pp. 57–64 (2000)

  38. Mangasarian, O.L.: Nonlinear Programming. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1994)

    MATH  Google Scholar 

  39. Maldonado, S., López, J.: Synchronized feature selection for support vector machines with twin hyperplanes. Knowl. Based Syst. 132, 119–128 (2017)

    Google Scholar 

  40. Bache, K., Lichman, M.: UCI Machine Learning Repository. (2013). http://archive.ics.uci.edu/ml

  41. Gravier, E., Pierron, G., Vincent-Salomon, A., et al.: A prognostic DNA signature for T1T2 node-negative breast cancer patients. Genes Chromosomes Cancer 49(12), 1125–34 (2010)

    Google Scholar 

  42. Alon, U., Barkai, N., Notterman, D.A., et al.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Nat. Acad. Sci. USA 96(12), 6745 (1999)

    Google Scholar 

  43. Davies, A.J., Rosenwald, A., Wright, G., et al.: Transformation of follicular lymphoma to diffuse large B-cell lymphoma proceeds by distinct oncogenic mechanisms. Br. J. Haematol. 136(2), 286 (2007)

    Google Scholar 

  44. West, M., Blanchette, C., Dressman, H., et al.: Predicting the clinical status of human breast cancer by using gene expression profiles. Proc. Nat. Acad. Sci. USA 98(20), 11462–7 (2001)

    Google Scholar 

  45. Pomeroy, S.L., Tamayo, P., Gaasenbeek, M., et al.: Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415(6870), 436 (2002)

    Google Scholar 

  46. Shipp, M.A., Ross, K.N., Tamayo, P., et al.: Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat. Med. 8(1), 68–74 (2002)

    Google Scholar 

  47. Yang, Z.M., He, J.Y., Shao, Y.H.: Feature selection based on linear twin support vector machines \(\star \). Proc. Comput. Sci. 17, 1039–1046 (2013)

    Google Scholar 

  48. Pearson, K.: Note on regression and inheritance in the case of two parents. Proc. R. Soc. Lond. 58, 240–242 (2006)

    Google Scholar 

  49. Weber, R., Basak, J.: Simultaneous feature selection and classification using kernel-penalized support vector machines. Inf. Sci. 181(1), 115–128 (2011)

    Google Scholar 

  50. Neumann, J., Schnörr, C., Steidl, G.: Combined SVM-based feature selection and classification. Mach. Learn. 61(1–3), 129–150 (2005)

    MATH  Google Scholar 

  51. Rakotomamonjy, A.: Variable selection using SVM based criteria. J. Mach. Learn. Res. 3(7–8), 1357–1370 (2003)

    MathSciNet  MATH  Google Scholar 

  52. Schölkopf, B., Platt, J., Hofmann, T.: Generalized maximum margin clustering and unsupervised kernel learning. In: International Conference on Neural Information Processing Systems. MIT Press, pp. 1417–1424 (2006)

  53. Djuric, N., Lan, L., Vucetic, S., et al.: BudgetedSVM: a toolbox for scalable SVM approximations. J. Mach. Learn. Res. 14(1), 3813–3817 (2013)

    MathSciNet  MATH  Google Scholar 

  54. Nanculef, R., Frandi, E., Sartori, C., et al.: A novel Frank–Wolfe algorithm. Analysis and applications to large-scale SVM training. Inf. Sci. 285(C), 66–99 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National High Technology Research and Development Program of China (863 Program) (2011AA010706), the National Natural Science Foundation of China (61133016, 61272527), and Ministry of Education-China Mobile Communications Corporation Research Funds (MCM20121041), the Natural Science Research in Colleges and Universities of Anhui Province,China (KJ2015A290, KJ2017A579).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayan Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, J., Liu, Q. & Qin, Z. Iterative tighter nonparallel hyperplane support vector clustering with simultaneous feature selection. Cluster Comput 22 (Suppl 4), 8035–8049 (2019). https://doi.org/10.1007/s10586-017-1587-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1587-8

Keywords

Navigation