Skip to main content

Advertisement

Log in

Identification of PIWI-interacting RNA modules by weighted correlation network analysis

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

PIWI-interacting RNAs (piRNAs) are the largest class of small noncoding RNAs in animal cells; they cooperate with PIWI proteins to safeguard the genome. Although several studies have established that piRNAs can be biomarkers of cancer, it is still difficult to elucidate the exact function of piRNAs. In addition, researchers need to further investigate the interplay between piRNAs and piRNA groups in tumorigenesis. To identify cancer-associated piRNA-modules, we performed a weighted gene coexpression network analysis (WGCNA) on piRNA expression data from 11 types of cancer. Thereafter, genes associated with hub piRNAs in modules were predicted, and functional analysis of these genes was used to interpret the relation between piRNA and cancer. The results indicated that these piRNA modules have significant associations with cancer. A module with a high correlation coefficient (cor: −0.83, p value: 1.86E−128) was found; it was especially relevant to head and neck squamous cell carcinoma. Moreover, we found that hub piRNAs in modules may contribute to metastasis. This finding advances the understanding of piRNA function and its association with human cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim, V.N.: Small RNAs just got bigger: Piwi-interacting RNAs (piRNAs) in mammalian testes. Genes Dev. 20(15), 1993–1997 (2006)

    Article  Google Scholar 

  2. O’Donnell, K.A., Boeke, J.D.: Mighty Piwis defend the germline against genome intruders. Cell 129(1), 37–44 (2007)

    Article  Google Scholar 

  3. Hale, B.J., Yang, C.X., Ross, J.W.: Small RNA regulation of reproductive function. Mol. Reprod. Dev. 81(2), 148–159 (2014)

    Article  Google Scholar 

  4. Doms, A., Schroeder, M.: GoPubMed: exploring PubMed with the gene ontology. Nucleic Acids Res. 33(Web Server issue), 783–786 (2005)

    Article  Google Scholar 

  5. Zhang, B., Horvath, S.: A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4 (2005). Article 17

  6. Cheng, J., Guo, J.M., Xiao, B.X., Miao, Y., Jiang, Z., Zhou, H., Li, Q.N.: piRNA, the new non-coding RNA, is aberrantly expressed in human cancer cells. Clin. Chim. Acta 412(17–18), 1621–1625 (2011)

    Article  Google Scholar 

  7. Vinolas, N., Aya, F., Navarro, A., Marrades, R.M., Cordeiro, A., Fernandez, A., Chic, N., Gimferrer, J.M., Ramirez, J., Molins, L et al.: piRNA-651 as a prognostic marker in surgically resected non-small-cell lung cancer. J. Clin. Oncol. 33(15), 11043 (2015)

  8. Li, D., Luo, Y., Gao, Y., Yang, Y., Wang, Y., Xu, Y., Tan, S., Zhang, Y., Duan, J., Yang, Y.: piR-651 promotes tumor formation in non-small cell lung carcinoma through the upregulation of cyclin D1 and CDK4. Int. J. Mol. Med. 38(3), 927–936 (2016)

    Article  Google Scholar 

  9. Cheng, J., Deng, H.X., Xiao, B.X., Zhou, H., Zhou, F., Shen, Z.S., Guo, J.M.: piR-823, a novel non-coding small RNA, demonstrates in vitro and in vivo tumor suppressive activity in human gastric cancer cells. Cancer Lett. 315(1), 12–17 (2012)

    Article  Google Scholar 

  10. Yan, H., Wu, Q.L., Sun, C.Y., Ai, L.S., Deng, J., Zhang, L., Chen, L., Chu, Z.B., Tang, B., Wang, K., et al.: piRNA-823 contributes to tumorigenesis by regulating de novo DNA methylation and angiogenesis in multiple myeloma. Leukemia 29(1), 196–206 (2015)

    Article  Google Scholar 

  11. Li, Y., Wu, X., Gao, H., Jin, J., Li, A., Kim, Y., Wang, F., Wang, J., Nelson, R., Mu, B., et al.: piR-32052, PiR-39894 and PiR-43607, three novel dicer-independent Piwi-interacting RNAs derived from the same PiRNA cluster, are up-regulated in metastatic renal cell carcinoma. Modern Pathol. 27, 244a–244a (2014)

    Google Scholar 

  12. Busch, J., Ralla, B., Jung, M., Wotschofsky, Z., Trujillo-Arribas, E., Schwabe, P., Kilic, E., Fendler, A., Jung, K.: Piwi-interacting RNAs as novel prognostic markers in clear cell renal cell carcinomas. J. Exp. Clin. Cancer Res. 34(1), 61 (2015)

  13. Martinez, V.D., Enfield, K.S.S., Rowbotham, D.A., Lam, W.L.: An atlas of gastric PIWI-interacting RNA transcriptomes and their utility for identifying signatures of gastric cancer recurrence. Gastric Cancer 19(2), 660–665 (2016)

    Article  Google Scholar 

  14. Krishnan, P., Ghosh, S., Graham, K., Mackey, J.R., Kovalchuk, O., Damaraju, S.: Piwi-interacting RNAs and PIWI genes as novel prognostic markers for breast cancer. Oncotarget 7(25), 37944–37956 (2016)

    Article  Google Scholar 

  15. Firmino, N., Martinez, V.D., Rowbotham, D.A., Enfield, K.S.S., Bennewith, K.L., Lam, W.L.: HPV status is associated with altered PIWI-interacting RNA expression pattern in head and neck cancer. Oral Oncol. 55, 43–48 (2016)

    Article  Google Scholar 

  16. Rizzo, F., Rinaldi, A., Marchese, G., Coviello, E., Sellitto, A., Cordella, A., Giurato, G., Nassa, G., Ravo, M., Tarallo, R., et al.: Specific patterns of PIWI-interacting small noncoding RNA expression in dysplastic liver nodules and hepatocellular carcinoma. Oncotarget 7(34), 54650–54661 (2016)

    Article  Google Scholar 

  17. Chu, H.Y., Hui, G.Y., Yuan, L., Shi, D., Wang, Y.B., Du, M.L., Zhong, D.Y., Ma, L., Tong, N., Qin, C., et al.: Identification of novel piRNAs in bladder cancer. Cancer Lett. 356(2), 561–567 (2015)

    Article  Google Scholar 

  18. Martinez, V.D., Vucic, E.A., Thu, K.L., Hubaux, R., Enfield, K.S., Pikor, L.A., Becker-Santos, D.D., Brown, C.J., Lam, S., Lam, W.L.: Unique somatic and malignant expression patterns implicate PIWI-interacting RNAs in cancer-type specific biology. Sci. Rep. 5, 10423 (2015)

    Article  Google Scholar 

  19. Pretty, R.: WGCNA-package WGCNA weighted gene co-expression network analysis. BMC Bioinform. 9(1), 559 (2011)

    Google Scholar 

  20. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003)

    Article  Google Scholar 

  21. Zhang, H., Ren, Y., Xu, H.M., Pang, D.Y., Duan, C., Liu, C.G.: The expression of stem cell protein Piwil2 and piR-932 in breast cancer. Surg. Oncol. 22(4), 217–223 (2013)

    Article  Google Scholar 

  22. Peng, L.P., Song, L., Liu, C.Y., Lv, X.H., Li, X.P., Jie, J., Zhao, D., Li, D.: piR-55490 inhibits the growth of lung carcinoma by suppressing mTOR signaling. Tumor Biol. 37(2), 2749–2756 (2016)

    Article  Google Scholar 

  23. Zhang, B., Kirov, S., Snoddy, J.: WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 33(Web Server issue), W741–W748 (2005)

    Article  Google Scholar 

  24. Wang, J., Duncan, D., Shi, Z., Zhang, B.: WEB-based GEne SeT analysis toolkit (WebGestalt): update 2013. Nucleic Acids Res. 41(Web Server issue), W77–W83 (2013)

    Article  Google Scholar 

  25. Byers, T., Wender, R.C., Jemal, A., Baskies, A.M., Ward, E.E., Brawley, O.W.: The American Cancer Society challenge goal to reduce US cancer mortality by 50% between 1990 and 2015: results and reflections. CA 66(5), 359 (2016)

    Google Scholar 

  26. Chen, W., Zheng, R., Baade, P.D., Zhang, S., Zeng, H., Bray, F., Jemal, A., Yu, X.Q., He, J.: Cancer statistics in China, 2015. CA 66(2), 115 (2016)

    Google Scholar 

  27. Yan, H., Wu, Q.L., Sun, C.Y., Ai, L.S., Deng, J., Zhang, L., Chen, L., Chu, Z.B., Tang, B., Wang, K.: piRNA-823 contributes to tumorigenesis by regulating de novo DNA methylation and angiogenesis in multiple myeloma. Leukemia 29(1), 196 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China under Grants 61571341, 61201312 and 91530113, Research Fund for the Doctoral Program of Higher Education of China (No. 2013 0203110017), the Fundamental Research Funds for the Central Universities of China (Nos BDY171416, JBZ170301, JB140306 and 20101164977), the Natural Science Foundation of Shaanxi Province in China (2015JM6275, 2017JM6024).

Author contributions Yajun Liu and Junying Zhang participated in the design of the study and drafted the manuscript. Yajun Liu conducted the data analysis. Aimin Li, Yuanyuan Zhang, and Yaoyao Li proposed numerous constructive ideas and revised the manuscript in detail. In addition, Xiguo Yuan, Zhongzhen He, Zhaowen Liu, and Shouheng Tuo contributed some insights into this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junying Zhang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest with respect to the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, J., Li, A. et al. Identification of PIWI-interacting RNA modules by weighted correlation network analysis. Cluster Comput 22 (Suppl 1), 707–717 (2019). https://doi.org/10.1007/s10586-017-1194-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1194-8

Keywords

Navigation