Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Neural networks for MANET AODV: an optimization approach

  • 503 Accesses

  • 3 Citations

Abstract

To find a route with good stability and less cost is a hot issue because of MANET’s mobility. AODV is one of the most widely used routing protocols in MANET because of its wide application, good performance and expansion. However, AODV is only an optional route instead of an optimized one. In this paper, continuous Hopfield Neural Networks is used to optimize the route to seek an optimal or nearly-optimal route, which can improve the usability and survivability of MANET. The simulation results show that CHNN-AODV is more effective and advantageous than AODV in the measurement of packet receiving rate, end-to-end average delay and routing recovery frequency.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Srivastava, P., Kumar, R.: An optimal fuzzy load balanced adaptive gateway discovery for ubiquitous internet access in MANET. J. Inform. Technol. Res. (JITR) 9(4), 45–63 (2016)

  2. 2.

    Nazir, M.K., Rehman, R.U., Nazir, A.: A novel review on security and routing protocols in MANET. Communications and Network 8.04, p. 205 (2016)

  3. 3.

    Rajasekar, S., Subramani, A.: A review on routing protocols for mobile Adhoc networks. i-manager’s J. Mob. Appl. Technol. 3(1), 39 (2016)

  4. 4.

    Walton, J., Blakeway, S., Kirpichnikova, A.: An analysis of MANET routing protocol performance for an interactive user engaging quiz. In: International Conference on Systems Informatics, Modelling and Simulation (SIMS). IEEE (2016)

  5. 5.

    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982)

  6. 6.

    Hopfield, J.J., Tank, D.W.: “Neural” computation of decisions in optimization problems. Biol. Cybern. 52(3), 141–152 (1985)

  7. 7.

    Bai, J., et al.: Finite-time stability analysis of discrete-time fuzzy Hopfield neural network. Neurocomputing 159, 263–267 (2015)

  8. 8.

    Wang, H., et al.: Global stability analysis of fractional-order Hopfield neural networks with time delay. Neurocomputing 154, 15–23 (2015)

  9. 9.

    Zhang, S., Yongguang, Y., Wang, H.: Mittag-Leffler stability of fractional-order Hopfield neural networks. Nonlinear Anal. 16, 104–121 (2015)

  10. 10.

    Duan, S., et al.: Small-world Hopfield neural networks with weight salience priority and memristor synapses for digit recognition. Neural Comput. Appl. 27(4), 837–844 (2016)

  11. 11.

    Ahad, N., Qadir, J., Ahsan, N.: Neural networks in wireless networks: techniques, applications and guidelines. J. Netw. Comput. Appl. 68, 1–27 (2016)

  12. 12.

    Kobayashi, M.: Symmetric complex-valued Hopfield neural networks. IEEE Trans. Neural Netw. Learn. Syst. 28(4), 1011–1015 (2017)

  13. 13.

    Clausen, T., Jacquet, P.: Optimized link state routing protocol (OLSR). No. RFC 3626 (2003)

  14. 14.

    Dutta, C.B., Biswas, U.: Intrusion detection system for power-aware OLSR. In: 2015 International Conference on Computational Intelligence and Networks (CINE). IEEE (2015)

  15. 15.

    Boushaba, A., et al.: Multi-point relay selection strategies to reduce topology control traffic for OLSR protocol in MANETs. J. Netw. Comput. Appl. 53, 91–102 (2015)

  16. 16.

    Perkins, C.E., Bhagwat, P.: Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers. ACM SIGCOMM Comput. Commun. Rev. 24(4), 234–244 (1994)

  17. 17.

    Imani, A., Keshavarz-Haddad, A.: DSDV-Het: a new scalable routing protocol for large heterogeneous Ad Hoc networks. In: 2014 7th International Symposium on Telecommunications (IST). IEEE (2014)

  18. 18.

    Kaur, D., Kumar, N.: Comparative analysis of aodv, olsr, tora, dsr and dsdv routing protocols in mobile ad-hoc networks. Int. J. Comput. Netw. Inform. Secur. 5(3), 39 (2013)

  19. 19.

    Perkins, C., Belding-Royer, E., Das, S.: Ad hoc on-demand distance vector (AODV) routing. No. RFC 3561 (2003)

  20. 20.

    Fehnker, A., et al.: Modelling and analysis of AODV in UPPAAL. arXiv:1512.07312 (2015)

  21. 21.

    Rao, M., Singh, N.: Performance evaluation of AODV nth BR routing protocol under varying node density and node mobility for MANETs. Ind. J. Sci. Technol. (2015). 10.17485/ijst/2015/v8i17/70445

  22. 22.

    Pearlin, R.F.S., Rekha, G.: Performance comparison of AODV, DSDV and DSR protocols in mobile networks using NS-2. Ind. J. Sci. Technol. (2016). 10.17485/ijst/2016/v9i8/87948

  23. 23.

    Zafar, S., Manzoor, H.T.M.: Throughput and delay analysis of AODV, DSDV and DSR routing protocols in mobile ad hoc networks. Int. J. Comput. Netw. Appl. (IJCNA) 3(2), 1–7 (2016)

  24. 24.

    Johnson, D., Hu, Y., Maltz, D.: The dynamic source routing protocol (DSR) for mobile ad hoc networks for IPv4. No. RFC 4728 (2007)

  25. 25.

    Shirke, S., et al.: Cluster based hierarchical addressing for dynamic source routing. In: International Conference on Smart Trends for Information Technology and Computer Communications. Springer, Singapore (2016)

  26. 26.

    Yanai, N.: Towards provable security of dynamic source routing protocol and its applications. In: International Conference on Conceptual Modeling. Springer International Publishing, New York (2016)

  27. 27.

    Chatterjee, S., Das, S.: Ant colony optimization based enhanced dynamic source routing algorithm for mobile Ad-hoc network. Inf. Sci. 295, 67–90 (2015)

  28. 28.

    Haas, Z.J., Pearlman, M.R., Samar, P.: The zone routing protocol (ZRP) for ad hoc networks (2002)

  29. 29.

    Hirschberg, O., Mukamel, D., Schütz, G.M.: Density profiles, dynamics, and condensation in the ZRP conditioned on an atypical current. J. Stat. Mech. Theory Exp. 2015(11), P11023 (2015)

  30. 30.

    Sharma, S., Jain, A., Gupta, N.: Modified ZRP to identify cooperative attacks. In: 2016 Second International Conference on Computational Intelligence & Communication Technology (CICT). IEEE (2016)

  31. 31.

    https://www.nsnam.org/releases/ (2016)

Download references

Acknowledgements

Supported by the Opening Project of Guangxi Colleges and Universities Key Laboratory of robot & welding. The project of Guangxi education Department (KY2016YB531, 2017KY0868).

Author information

Correspondence to Hua Yang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Li, Z. & Liu, Z. Neural networks for MANET AODV: an optimization approach. Cluster Comput 20, 3369–3377 (2017). https://doi.org/10.1007/s10586-017-1086-y

Download citation

Keywords

  • Neural networks
  • MANET
  • Routing protocol
  • AODV