Skip to main content

Advertisement

Log in

A bi-level optimization for an HVAC system

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Improving the control strategy of an heating, ventilation, and air-conditioning (HVAC) system can result in substantial energy saving. In this paper, we formulate the whole HVAC system to a bi-level optimization problem to minimize the energy consumption of the HVAC system and maximize the satisfaction of indoor human comfort. The hierarchical evolutionary algorithm with preliminary feasibility conditions and crude energy index is proposed to find the good-quality control strategy of the HVAC system. Numerical results demonstrate the efficiency and effectiveness of the proposed method and show the performance of the obtained control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

E :

Energy consumption

CE :

Crude energy index

N :

Number

G :

Flow rate

Q :

Heat or cooling load

K :

Opening value of valve

f :

Frequency

T :

Temperature

H :

Humidity

CO2:

Carbon dioxide concentration

b :

Computation coefficient

\(\theta \) :

Blind angle

W :

Opening value of window

COP :

Coefficient of performance

vc :

Objection function value of lower level problem

ve :

Objection function value of upper level problem

k :

Time k

Upper :

Upper bound

Lower :

Lower bound

set :

Set point

air :

Air

cw :

Condensing water

chw :

Chilled water

ct :

Cooling tower

c :

Chiller

pump :

Pump

coil :

Fan coil

in :

Inlet of component

out :

Outlet of component

ind :

Indoor

u :

Upper level

l :

Lower level

room :

Room

References

  1. Imbabi, M.S.: Computer validation of scale model tests for building energy simulation. Int. J. Energy Res. 14, 727–736 (1990)

    Article  Google Scholar 

  2. Ferreira, P.M., Sliva, S.M. Ruano, A.E., Negrier, A.T., Conceicao, E.Z.E.: Neural network PMV estimation for model-based predictive control of HVAC systems. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2012)

  3. Mathews, E.H., Botha, C.P., Arndt, D.C., Malan, A.: HVAC control strategies to enhance comfort and minimize energy usage. Energy Build. 33, 853–863 (2001)

    Article  Google Scholar 

  4. Kusiak, A., Tang, F., Xu, G.L.: Multi-objective optimization of HVAC system with an evolutionary computation algorithm. Energy 36, 2440–2449 (2011)

    Article  Google Scholar 

  5. Sum, B., Luh, P.B., Jia, Q.S., Jiang, Z.Y., Wang, F.L., Song, C.: Building energy management: integrated control of active and passive heating, cooling, lighting, shading, and ventilation systems. IEEE Trans. Autom. Sci. Eng. 10(3), 588–602 (2013)

    Article  Google Scholar 

  6. Chu, C.M., Jong, T.L., Huang, Y.W.: Thermal comfort control on multi-room fan coil unit system using LEE-based fuzzy logic. Energy Convers. Manag. 46, 1579–1593 (2005)

    Article  Google Scholar 

  7. Cheung, H., Braun, J.E.: Empirical modeling of the impacts of faults on water-cooled chiller power consumption for use in building simulation programs. Appl. Therm. Eng. 99, 756–764 (2016)

    Article  Google Scholar 

  8. Zhao, Y., Sun, F., Long, G., Huang, X., Huang, W.: Comparative study on the cooling characteristics of high level water collecting natural draft wet cooling tower and the usual cooling tower. Energy Convers. Manag. 116, 150–164 (2016)

    Article  Google Scholar 

  9. Fong, K.F., Hanby, V.I., Chow, T.T.: System optimization for HVAC energy management using the robust evolutionary algorithm. Appl. Therm. Eng. 29, 2327–2334 (2009)

    Article  Google Scholar 

  10. Flake, B.A.: Parameter estimation and optimal supervisory control of chilled water plants. Ph.D. thesis, Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI (1998)

  11. Liu, Z., Song, F., Jiang, Z., Chen, X., Guan, X.: Optimization based integrated control of building HVAC system. Build. Simul. 7, 375–387 (2014)

    Article  Google Scholar 

  12. Liu, Z., Chen, X., Xu, X., Guan, X.: Decentralized Optimization for Energy Saving of HVAC System, pp. 225–230. CASE, Washington, D.C (2013)

    Google Scholar 

  13. Fang, X., Jin, X., Du, Z., Wang, Y.: The evaluation of operation performance of HVAC system based on the ideal operation level of system. Energy Build. 110, 330–344 (2015)

    Article  Google Scholar 

  14. Koh, A.: Solving transportation bi-level programs with differential evolution. In: IEEE Congress on Evolutionary Computation (CEC 2007), pp. 2243–2250 (2007)

  15. Chiou, S.: Bi-level formulation for equilibrium traffic flow and signal settings. In: Griffiths, J.D. (ed.) Mathematics in Transport Planning and Control, pp. 59–68. Pergamon, Amsterdam (1998)

    Chapter  Google Scholar 

  16. An, B., Ordonez, F., Tambe, M., Shieh, E., Yang, R., Baldwin, C., DiRenzo III, J., Moretti, K., Maule, B., Meyer, G.: A deployed quantal response-based patrol planning system for the U.S. coast guard. Interfaces 43(5), 400–420 (2013)

    Article  Google Scholar 

  17. Liacco, D.: The adaptive reliability control system. IEEE Trans. Power App. Syst. PAS 86(5), 517–531 (1967)

    Article  Google Scholar 

  18. Fudenberg, D., Tirole, J.: Game Theory. MIT Press, Cambridge (1993)

    MATH  Google Scholar 

  19. Zhang, X.N., Yang, H.: The optimal cordon-based network congestion pricing problem. Transp. Res. Part B 38(5), 517–537 (2004)

    Article  Google Scholar 

  20. Calvete, H.I., Galé, C., Oliveros, M.J.: Bilevel model for production-distribution planning solved by using ant colony optimization. Comput. Oper. Res. 38(1), 320–327 (2011)

    Article  MATH  Google Scholar 

  21. Marinakis, Y., Marinaki, M.: A bilevel genetic algorithm for a real life location routing problem. Int. J. Logist: Res. Appl. 11(1), 49–65 (2008)

    Article  MATH  Google Scholar 

  22. Talbi, E.G.: Metaheuristics: From Design to Implementation. Wiley, Hoboken, NJ (2009)

    Book  MATH  Google Scholar 

  23. Fliege, J., Vicente, L.N.: Multicriteria approach to bilevel optimization. Optim. Theory Appl. 131(2), 209–225 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Legillon, F., Liefooghe, A., Talbi, E.G.: CoBRA: a cooperative coevolutionary algorithm for bi-level optimization. IEEE Congress on Evolutionary Computation (CEC 2012), pp. 1–8 (2012)

  25. Chaabani, A., Bechikh, S., Said, L.B.: A co-evolutionary decomposition-based algorithm for Bi-Level combinatorial optimization. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 124–132 (2015)

  26. Oduguwa, V., Roy, R.: Bi-level optimisation using genetic algorithm. In: 2002 IEEE International Conference on Artificial Intelligence Systems (ICAIS 2002), pp. 322–327 (2002)

  27. Colson, B., Marcotte, P., Savard, G.: Bilevel programming: a survey. 4OR 3(2), 87–107 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. DeST software, Department of Building Science, Tsinghua University, Bejing (2008). http://www.dest.com.cn

  29. Xue, Z.F., Jiang, Y.: Energy-Saving Diagnosis and Retrofit in Existing Building. China Architecture & Building Press, Beijing (2007). (in Chinese)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation (U1301254) and National Key Research and Development Program of China (2016YFB0901902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, L., Chen, X. & Guan, X. A bi-level optimization for an HVAC system. Cluster Comput 20, 3237–3249 (2017). https://doi.org/10.1007/s10586-017-1050-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1050-x

Keywords

Navigation